Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Judah Cohen x
  • Journal of Hydrometeorology x
  • Refine by Access: All Content x
Clear All Modify Search
Hengchun Ye
,
Judah Cohen
, and
Michael Rawlins

Abstract

Daily synoptic observations were examined to determine the critical air temperatures and dewpoints that separate solid versus liquid precipitation for the fall and spring seasons at 547 stations over northern Eurasia. The authors found that critical air temperatures are highly geographically dependent, ranging from −1.0° to 2.5°C, with the majority of stations over European Russia ranging from 0.5° to 1.0°C and those over south-central Siberia ranging from 1.5° to 2.5°C. The fall season has a 0.5°–1.0°C lower value than the spring season at 42% stations. Relative humidity, elevation, the station's air pressure, and climate regime were found to have varying degrees of influences on the distribution of critical air temperature, although the relationships are very complex and cannot be formulated into a simple rule that can be applied universally. Although the critical dewpoint temperatures have a spread of −1.5° to 1.5°C, 92% of stations have critical values of 0.5°–1.0°C. The critical dewpoint is less dependent on environmental factors and seasons. A combination of three critical dewpoints and three air temperatures is developed for each station for spring and fall separately that has improved snow event predictability when the dewpoint is in the range of −0.5°–1.5°C and has improved rainfall event predictability when the dewpoint is higher than or equal to 0°C based on the statistics of all 537 stations. Results suggest that application of site-specific critical values of air temperature and dewpoint to discriminate between solid and liquid precipitation is needed to improve snow and hydrological modeling at local and regional scales.

Full access
Judah L. Cohen
,
David A. Salstein
, and
Richard D. Rosen

Abstract

The zonal-mean meridional transport of water vapor across the globe is evaluated using the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis for 1948–97. The shape of the meridional profile of the climatological mean transport closely resembles that of previous mean climate descriptions, but values tend to be notably larger than in climatologies derived from radiosonde-only-based analyses. The unprecedented length of the NCEP–NCAR dataset invites a focus on interannual variations in the zonal-mean moisture transport, and these results for northern winter are highlighted here. Although interannual variability in the transport is typically small at most latitudes, a significant ENSO signal is present, marked by a strengthening of water vapor transports over much of the winter hemisphere during warm events. Because of an increase in tropical sea surface temperatures and in the frequency of warm events relative to cold events in the latter half of the 50-yr record, this interannual signal projects onto an overall trend toward enhanced meridional moisture transports in the global hydrological cycle.

Full access