Search Results

You are looking at 1 - 10 of 22 items for

  • Author or Editor: Julienne Stroeve x
  • Refine by Access: All Content x
Clear All Modify Search
Julienne Stroeve
and
Konrad Steffen

Abstract

The Advanced Very High Resolution Radiometer is used to derive surface temperatures for one satellite pass under clear skies over the Greenland ice sheet from 1989 through 1993. The results of these temperatures are presented as monthly means, and their spatial and temporal variability are discussed. Accuracy of the dry snow surface temperatures is estimated to be better than 1 K during summer. This error is expected to increase during polar night due to problems in cloud identification. Results indicate the surface temperature of the Greenland ice sheet is strongly dominated by topography, with minimum surface temperatures associated with the high elevation regions. In the summer, maximum surface temperatures occur during July along the western coast and southern tip of the ice sheet. Minimum temperatures are found at the summit during summer and move farther north during polar night. Large interannual variability in surface temperatures occurs during winter associated with katabatic storm events. Summer temperatures show little variation, although 1992 stands out as being colder than the other years. The reason for the lower temperatures during 1992 is believed to be a result of the 1991 eruption of Mount Pinatubo.

Full access
Julienne Stroeve
,
Marcel Haefliger
, and
Konrad Steffen

Abstract

The relationship between Along Track Scanning Radiometer (ATSR) thermal radiances and snow surface temperature for the Greenland ice sheet is examined through forward calculations of the LOWTRAN 7 radiative transfer model. Inputs to the model include in situ radiosonde profile measurements of temperature, pressure and humidity, surface temperatures, and cloud observations for spring-summer 1990 and 1991 from the ETH-CU research camp, located at 69°34′N, 49°18′W on the Greenland ice sheet. Atmospheric correction coefficients were determined through a statistical analysis of daily clear-sky profiles for three different combinations of the ATSR thermal infrared (TIR) channels. Using all available ATSR TIR information, the 11- and 12-μm channels in both the nadir and forward views showed the smallest rms error of less than 0.2 K in the estimated surface temperature. This dual-view algorithm was found to be least sensitive to changes in concentrations of atmospheric constituents, in contrast to the standard “split-window” technique. Assuming accurate surface emissivities can be obtained, the dual-view algorithm is recommended for applications in polar regions where the variety of atmospheric conditions can be large.

Full access
William Gregory
,
Michel Tsamados
,
Julienne Stroeve
, and
Peter Sollich

Abstract

Reliable predictions of the Arctic sea ice cover are becoming of paramount importance for Arctic communities and industry stakeholders. In this study pan-Arctic and regional September mean sea ice extents are forecast with lead times of up to 3 months using a complex network statistical approach. This method exploits relationships within climate time series data by constructing regions of spatiotemporal homogeneity (i.e., nodes), and subsequently deriving teleconnection links between them. Here the nodes and links of the networks are generated from monthly mean sea ice concentration fields in June, July, and August; hence, individual networks are constructed for each respective month. Network information is then utilized within a linear Gaussian process regression forecast model, a Bayesian inference technique, in order to generate predictions of sea ice extent. Pan-Arctic forecasts capture a significant amount of the variability in the satellite observations of September sea ice extent, with detrended predictive skills of 0.53, 0.62, and 0.81 at 3-, 2-, and 1-month lead times, respectively. Regional forecasts are also performed for nine Arctic regions. On average, the highest predictive skill is achieved in the Canadian Archipelago, Beaufort, Chukchi, East Siberian, Laptev, and Kara Seas, although the ability to accurately predict many of these regions appears to be changing over time.

Free access
Tomoko Koyama
,
Julienne Stroeve
,
John Cassano
, and
Alex Crawford

Abstract

Extensive summer sea ice loss has occurred within the Beaufort, Chukchi, East Siberian, and Laptev Seas over the last decade. Associated anomalies in sensible and latent heat fluxes in autumn have increased Arctic atmospheric precipitable water and air temperatures, with the potential to impact autumn and winter cyclone activity. To examine if a connection exists between recent Arctic sea ice loss and cyclone activity, several cyclone metrics from 60° to 90°N are analyzed. Results show that following years with less September sea ice, there is a subsequent increase in moisture availability, regional baroclinicity, and changes in vertical stability that favor cyclogenesis. However, tracking of individual cyclones indicates no coherent increase in cyclone frequency or intensity associated with sea ice loss. Furthermore, no robust northward progression of extreme cyclones is observed.

Full access
Linette N. Boisvert
,
Alek A. Petty
, and
Julienne C. Stroeve

Abstract

Atmospheric data from the Atmospheric Infrared Sounder (AIRS) were used to study an extreme warm and humid air mass transported over the Barents–Kara Seas region by an Arctic cyclone at the end of December 2015. Temperature and humidity in the region was ~10°C (>3σ above the 2003–14 mean) warmer and ~1.4 g kg−1 (>4σ above the 2003–14 mean) wetter than normal during the peak of this event. This anomalous air mass resulted in a large and positive flux of energy into the surface via the residual of the surface energy balance (SEB), compared to the weakly negative SEB from the surface to the atmosphere expected for that time of year. The magnitude of the downwelling longwave radiation during the event was unprecedented compared to all other events detected by AIRS in December/January since 2003. An approximate budget scaling suggests that this anomalous SEB could have resulted in up to 10 cm of ice melt. Thinning of the ice pack in the region was supported by remotely sensed and modeled estimates of ice thickness change. Understanding the impact of this anomalous air mass on a thinner, weakened sea ice state is imperative for understanding future sea ice–atmosphere interactions in a warming Arctic.

Full access
Alex D. Crawford
,
Jennifer V. Lukovich
,
Michelle R. McCrystall
,
Julienne C. Stroeve
, and
David G. Barber

Abstract

The ideal environment for extratropical cyclone development includes strong vertical shear of horizontal wind and low static stability in the atmosphere. Arctic sea ice loss enhances the upward flux of energy to the lower atmosphere, reducing static stability. This suggests that Arctic sea ice loss may facilitate more intense storms over the Arctic Ocean. However, prior research into this possibility has yielded mixed results with uncertain cause and effect. This work has been limited either in scope (focusing on a few case studies) or resolution (focusing on seasonal averages). In this study, we extend this body of research by comparing the intensification rate and maximum intensity of individual cyclones to local sea ice anomalies. We find robust evidence that reduced sea ice in winter (December–March) strengthens Arctic cyclones by enhancing the surface turbulent heat fluxes and lessening static stability while also strengthening vertical shear of horizontal wind. We find weaker evidence for this connection in spring (April–June). In both seasons, lower sea ice concentration also enhances cyclone-associated precipitation. Although reduced sea ice also weakens static stability in September/October (when sea ice loss has been especially acute), this does not translate to stronger storms because of coincident weakening of wind shear. Sea ice anomalies also have little or no connection to cyclone-associated precipitation in these months. Therefore, future sea ice reductions (e.g., related to delayed autumn freeze-up) will likely enhance Arctic cyclone intensification in winter and spring, but this relationship is sensitive to simultaneous connections between sea ice and wind shear.

Significance Statement

Sea ice is a barrier between the ocean and atmosphere, limiting the exchange of energy between them. As the amount of sea ice in the Arctic Ocean declines, the ocean can transfer more heat to the atmosphere above in fall and winter. It is theorized that this extra energy may help intensify storms that pass through the Arctic. We examine individual storms over the Arctic Ocean and what sea ice conditions they experience as they develop. We find that storms intensify more when sea ice is lower than normal in the winter season only. This relationship may contribute to stronger Arctic winter storms in the future, including heavier precipitation and stronger winds (which can enhance wave heights and coastal erosion).

Open access
Ingrid H. Onarheim
,
Tor Eldevik
,
Lars H. Smedsrud
, and
Julienne C. Stroeve

Abstract

The Arctic Ocean is currently on a fast track toward seasonally ice-free conditions. Although most attention has been on the accelerating summer sea ice decline, large changes are also occurring in winter. This study assesses past, present, and possible future change in regional Northern Hemisphere sea ice extent throughout the year by examining sea ice concentration based on observations back to 1950, including the satellite record since 1979. At present, summer sea ice variability and change dominate in the perennial ice-covered Beaufort, Chukchi, East Siberian, Laptev, and Kara Seas, with the East Siberian Sea explaining the largest fraction of September ice loss (22%). Winter variability and change occur in the seasonally ice-covered seas farther south: the Barents Sea, Sea of Okhotsk, Greenland Sea, and Baffin Bay, with the Barents Sea carrying the largest fraction of loss in March (27%). The distinct regions of summer and winter sea ice variability and loss have generally been consistent since 1950, but appear at present to be in transformation as a result of the rapid ice loss in all seasons. As regions become seasonally ice free, future ice loss will be dominated by winter. The Kara Sea appears as the first currently perennial ice-covered sea to become ice free in September. Remaining on currently observed trends, the Arctic shelf seas are estimated to become seasonally ice free in the 2020s, and the seasonally ice-covered seas farther south to become ice free year-round from the 2050s.

Open access
Louis-Philippe Caron
,
François Massonnet
,
Philip J. Klotzbach
,
Tom J. Philp
, and
Julienne Stroeve
Full access
Louis-Philippe Caron
,
François Massonnet
,
Philip J. Klotzbach
,
Tom J. Philp
, and
Julienne Stroeve
Free access
Alex D. Crawford
,
Michelle R. McCrystall
,
Jennifer V. Lukovich
, and
Julienne C. Stroeve

Abstract

Extratropical cyclones (ETCs) are a common source of natural hazards, from heavy rain to high winds, and the direction and speed of ETC propagation influence where impacts occur and for how long. Eighteen models from phase 6 of the Coupled Model Intercomparison Project (CMIP6) are used to examine the response of Northern Hemisphere ETC propagation to global warming. In winter, simulations show that ETCs become slower over North America and the Arctic but faster over the Pacific Ocean and part of Europe. In summer, storm propagation becomes slightly slower throughout much of the midlatitudes (30°–60°N). Trends in both seasons relate closely to the impact of global warming on upper-level (250 hPa) winds and the 850–250-hPa thickness gradient. Wherever local thickness gradients weaken in the future, ETCs travel more slowly; conversely, wherever they strengthen, ETCs travel more quickly. In contrast to past work, we find that winter storm propagation becomes more zonal over the Pacific and Atlantic Oceans, which may link to decreased atmospheric blocking and less-sinuous flow at 500 hPa. The importance of model projections of the 850–250-hPa thickness gradient for meridionality of ETC propagation remains uncertain for these regions. However, for North America, models that project stronger thickness gradients also project less-sinuous flow and more-zonal ETC propagation. Overall, this work highlights strong regional variation in how the speed and direction of ETC propagation, and the upper-level circulation patterns that govern them, respond to continued warming.

Significance Statement

Extratropical storms are common sources of natural hazards like heavy rain and high winds. In our analysis of projections from 18 climate models, we find that winter storms tend to move more slowly over midlatitude North America and the Arctic as the world warms but move faster over the North Pacific Ocean and part of Europe. Slight slowing of summer storms is projected throughout much of the midlatitudes. When storms move slower, their attendant hazards (like heavy precipitation) last longer for the areas they impact. Further, Atlantic winter storms travel more west to east instead of southwest to northeast, so they impact Iceland less often and the British Isles more often. Changes become more dramatic with each additional degree of global warming.

Open access