Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Justin W. Monroe x
  • Weather and Forecasting x
  • Refine by Access: All Content x
Clear All Modify Search
Thea N. Sandmæl
,
Brandon R. Smith
,
Jonathan G. Madden
,
Justin W. Monroe
,
Patrick T. Hyland
,
Benjamin A. Schenkel
, and
Tiffany C. Meyer

Abstract

Developed as part of a larger effort by the National Weather Service (NWS) Radar Operations Center to modernize their suite of single-radar severe weather algorithms for the WSR-88D network, the Tornado Probability Algorithm (TORP) and the New Mesocyclone Detection Algorithm (NMDA) were evaluated by operational forecasters during the 2021 National Oceanic and Atmospheric Administration (NOAA) Hazardous Weather Testbed (HWT) Experimental Warning Program Radar Convective Applications experiment. Both TORP and NMDA leverage new products and advances in radar technology to create rotation-based objects that interrogate single-radar data, providing important summary and trend information that aids forecasters in issuing time-critical and potentially life-saving weather products. Utilizing virtual resources like Google Workspace and cloud instances on Amazon Web Services, 18 forecasters from the NOAA/NWS and the U.S. Air Force participated remotely over three weeks during the spring of 2021, providing valuable feedback on the efficacy of the algorithms and their display in an operational warning environment, serving as a critical step in the research-to-operations process for the development of TORP and NMDA. This article will discuss the details of the virtual HWT experiment and the results of each algorithm’s evaluation during the testbed.

Significance Statement

Before transitioning newly developed radar-based severe weather applications to forecasting operations, an experiment simulating the use of these tools by end users issuing severe weather warnings is helpful to identify both how they are best utilized and address any needed improvements to increase their operational readiness. Conducted in 2021, this study describes the forecaster evaluation of the single-radar Tornado Probability Algorithm (TORP) and the New Mesocyclone Detection Algorithm (NMDA) in one of the first completely virtual Hazardous Weather Testbed (HWT) experiments. Participants stated both TORP and NMDA offered marked improvement over the currently available algorithms by helping the operational forecaster build their confidence when issuing severe weather warnings and increasing their overall situational awareness of storms within their domain.

Restricted access
Katie A. Wilson
,
Patrick C. Burke
,
Burkely T. Gallo
,
Patrick S. Skinner
,
T. Todd Lindley
,
Chad Gravelle
,
Stephen W. Bieda III
,
Jonathan G. Madden
,
Justin W. Monroe
,
Jorge E. Guerra
, and
Dale A. Morris

Abstract

The operational utility of the NOAA National Severe Storm Laboratory’s storm-scale probabilistic Warn-on-Forecast System (WoFS) was examined across the watch-to-warning time frame in a virtual NOAA Hazardous Weather Testbed (HWT) experiment. Over four weeks, 16 NWS forecasters from local Weather Forecast Offices, the Storm Prediction Center, and the Weather Prediction Center participated in simulated forecasting tasks and focus groups. Bringing together multiple NWS entities to explore new guidance impacts on the broader forecast process is atypical of prior NOAA HWT experiments. This study therefore provides a framework for designing such a testbed experiment, including methodological and logistical considerations necessary to meet the needs of both local office and national center NWS participants. Furthermore, this study investigated two research questions: 1) How do forecasters envision WoFS guidance fitting into their existing forecast process? and 2) How could WoFS guidance be used most effectively across the current watch-to-warning forecast process? Content and thematic analyses were completed on flowcharts of operational workflows, real-time simulation interactions, and focus group activities and discussions. Participants reported numerous potential applications of WoFS, including improved coordination and consistency between local offices and national centers, enhanced hazard messaging, and improved operations planning. Challenges were also reported, including the knowledge and training required to incorporate WoFS guidance effectively and forecasters’ trust in new guidance and openness to change. The solutions identified to these challenges will take WoFS one step closer to transition, and in the meantime, improve the capabilities of WoFS for experimental use within the operational community.

Significance Statement

A first-of-its-kind experiment brought together forecasters from local weather forecast offices and national centers to examine the experimental Warn-on-Forecast System’s (WoFS’s) potential applications across watch-to-warning scales. This experiment demonstrated that WoFS can provide great benefit to forecasters, though a few challenges remain. Benefits provided by WoFS frequently overlap roles and responsibilities at local and national scales, suggesting the potential for enhanced cross-office collaboration. The challenges anticipated for WoFS operational use are far fewer than the benefits, and some solutions to these challenges are now being implemented. Finally, the mixed-methods experimental framework described herein also provides guidance for future collaborative experiments in testbed research that examine impacts of new technologies across NWS entities.

Restricted access