Search Results
You are looking at 1 - 6 of 6 items for :
- Author or Editor: K. Krishna x
- Journal of Climate x
- Refine by Access: All Content x
Abstract
In this study the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) version 3.5.2 was used to simulate the Indian summer monsoon during the two contrasting years of 1987 and 1988, a dry year and a wet year, respectively. Three different convection parameterization schemes of Betts–Miller–Janjic, Kain–Fritsch, and Grell were used to study the sensitivity of monsoon to cumulus effects. The model was integrated for a period of 6 months, starting from three different initial conditions of 0000 UTC on 1, 2, and 3 May of each year using the NCEP–NCAR reanalysis data as input. The 6-hourly reanalysis data were used to provide the lateral boundary conditions, and the observed weekly Reynolds sea surface temperature, linearly interpolated to 6 h, was used as the lower boundary forcing. The results show that all three cumulus schemes were able to simulate the interannual and intraseasonal variabilities in the monsoon with reasonable accuracy. However, the spatial distribution of the rainfall and its quantity were different in all the schemes. The Grell scheme underestimated the rainfall in both the years. The Kain–Fritsch scheme simulated the observed rainfall well during July and August, the peak monsoon months, of the year 1988 but overestimated the rainfall in June and September of 1988 and throughout the monsoon season of 1987. The Betts–Miller–Janjic scheme simulated less rainfall in the drought year of 1987 and overestimated the rainfall in June and July of 1988. The circulation patterns simulated by the Betts–Miller–Janjic and Kain–Fritsch schemes are comparable to the observed patterns.
Abstract
In this study the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) version 3.5.2 was used to simulate the Indian summer monsoon during the two contrasting years of 1987 and 1988, a dry year and a wet year, respectively. Three different convection parameterization schemes of Betts–Miller–Janjic, Kain–Fritsch, and Grell were used to study the sensitivity of monsoon to cumulus effects. The model was integrated for a period of 6 months, starting from three different initial conditions of 0000 UTC on 1, 2, and 3 May of each year using the NCEP–NCAR reanalysis data as input. The 6-hourly reanalysis data were used to provide the lateral boundary conditions, and the observed weekly Reynolds sea surface temperature, linearly interpolated to 6 h, was used as the lower boundary forcing. The results show that all three cumulus schemes were able to simulate the interannual and intraseasonal variabilities in the monsoon with reasonable accuracy. However, the spatial distribution of the rainfall and its quantity were different in all the schemes. The Grell scheme underestimated the rainfall in both the years. The Kain–Fritsch scheme simulated the observed rainfall well during July and August, the peak monsoon months, of the year 1988 but overestimated the rainfall in June and September of 1988 and throughout the monsoon season of 1987. The Betts–Miller–Janjic scheme simulated less rainfall in the drought year of 1987 and overestimated the rainfall in June and July of 1988. The circulation patterns simulated by the Betts–Miller–Janjic and Kain–Fritsch schemes are comparable to the observed patterns.
Abstract
The location of the 500-hPa ridge axis during April over India is one of the most important long-range predictors for the summer monsoon rainfall. This paper presents a comprehensive analysis on its space-time variability during the premonsoon season and its relation with the monsoon rainfall. Data on the daily latitudinal locations of the 500-hPa ridge axis along three longitudes during March, April, and May, as well as all-India rainfall and subdivisional monsoon rainfall for the period 1967–90, have been used.
The analysis involves correlations between the running means of the premonsoon ridge locations over windows of 15, 21, and 31 days, and the subsequent monsoon rainfall. The ridge location in March shows negative correlation with the all-India summer monsoon rainfall, while that in April shows positive correlation. The anticorrelation of the March ridge was more dominant with the monsoon rainfall of the peninsular India, while the positive correlation of the April ridge was more dominant with the monsoon rainfall of northern India. Regression equations for the prediction of the monsoon rainfall have also been developed.
Abstract
The location of the 500-hPa ridge axis during April over India is one of the most important long-range predictors for the summer monsoon rainfall. This paper presents a comprehensive analysis on its space-time variability during the premonsoon season and its relation with the monsoon rainfall. Data on the daily latitudinal locations of the 500-hPa ridge axis along three longitudes during March, April, and May, as well as all-India rainfall and subdivisional monsoon rainfall for the period 1967–90, have been used.
The analysis involves correlations between the running means of the premonsoon ridge locations over windows of 15, 21, and 31 days, and the subsequent monsoon rainfall. The ridge location in March shows negative correlation with the all-India summer monsoon rainfall, while that in April shows positive correlation. The anticorrelation of the March ridge was more dominant with the monsoon rainfall of the peninsular India, while the positive correlation of the April ridge was more dominant with the monsoon rainfall of northern India. Regression equations for the prediction of the monsoon rainfall have also been developed.
Abstract
Summer monsoon rains are a critical factor in Thailand’s water resources and agricultural planning and management. In fact, they have a significant impact on the country’s economic health. Consequently, understanding the variability of the summer monsoon rains over Thailand is important for instituting effective mitigating strategies against extreme rainfall fluctuations. To this end, the authors systematically investigated the relationships between summer monsoon precipitation from the central and northern regions of Thailand and large-scale climate features. It was found that Pacific sea surface temperatures (SSTs), in particular, El Niño–Southern Oscillation (ENSO), have a negative relationship with the summer monsoon rainfall over Thailand in recent decades. However, the relationship between summer rainfall and ENSO was weak prior to 1980. It is hypothesized that the ENSO teleconnection depends on the SST configuration in the tropical Pacific Ocean, that is, an eastern Pacific–based El Niño pattern, such as is the case in most of the post-1980 El Niño events, tends to place the descending limb of the Walker circulation over the Thailand–Indonesian region, thereby significantly reducing convection and consequently, rainfall over Thailand. It is believed that this recent shift in the Walker circulation is instrumental for the nonstationarity in ENSO–monsoon relationships in Thailand. El Niños of 1997 and 2002 corroborate this hypothesis. This has implications for monsoon rainfall forecasting and, consequently, for resources planning and management.
Abstract
Summer monsoon rains are a critical factor in Thailand’s water resources and agricultural planning and management. In fact, they have a significant impact on the country’s economic health. Consequently, understanding the variability of the summer monsoon rains over Thailand is important for instituting effective mitigating strategies against extreme rainfall fluctuations. To this end, the authors systematically investigated the relationships between summer monsoon precipitation from the central and northern regions of Thailand and large-scale climate features. It was found that Pacific sea surface temperatures (SSTs), in particular, El Niño–Southern Oscillation (ENSO), have a negative relationship with the summer monsoon rainfall over Thailand in recent decades. However, the relationship between summer rainfall and ENSO was weak prior to 1980. It is hypothesized that the ENSO teleconnection depends on the SST configuration in the tropical Pacific Ocean, that is, an eastern Pacific–based El Niño pattern, such as is the case in most of the post-1980 El Niño events, tends to place the descending limb of the Walker circulation over the Thailand–Indonesian region, thereby significantly reducing convection and consequently, rainfall over Thailand. It is believed that this recent shift in the Walker circulation is instrumental for the nonstationarity in ENSO–monsoon relationships in Thailand. El Niños of 1997 and 2002 corroborate this hypothesis. This has implications for monsoon rainfall forecasting and, consequently, for resources planning and management.
Abstract
Synergizing satellite remote sensing data with vertical profiles of atmospheric thermodynamics and regional climate model simulations, we investigate the relative importance, transport pathways, and seasonality of contribution of dust from regional (Thar Desert and adjoining arid regions) and remote (southwest Asia and northeast Africa) sources over the northeast Indian Ocean [i.e., the Bay of Bengal (BOB)]. We show that while over the northern BOB dust from the regional sources contribute more than 50% to the total dust load during the southwest monsoon period (June–September), interestingly; the remote dust sources dominate rest of the year. On the other hand, over the southern BOB, dust transported from the remote-source regions dominate throughout the year. During June, the dry elevated layer (at altitudes between 850 and 700 hPa) of dust, transported across the Indo-Gangetic Plain to the northern BOB, arises primarily from the Thar Desert. Dust from remote sources in the far west reaches the southern BOB after traversing over and around the southern Indian Peninsula. Since dust from these distinct source regions have different mineral composition (hence optical properties) and undergo distinct changes during atmospheric transport, it is important to understand source-specific dust contribution and transport pathways to address dust–climate feedback.
Abstract
Synergizing satellite remote sensing data with vertical profiles of atmospheric thermodynamics and regional climate model simulations, we investigate the relative importance, transport pathways, and seasonality of contribution of dust from regional (Thar Desert and adjoining arid regions) and remote (southwest Asia and northeast Africa) sources over the northeast Indian Ocean [i.e., the Bay of Bengal (BOB)]. We show that while over the northern BOB dust from the regional sources contribute more than 50% to the total dust load during the southwest monsoon period (June–September), interestingly; the remote dust sources dominate rest of the year. On the other hand, over the southern BOB, dust transported from the remote-source regions dominate throughout the year. During June, the dry elevated layer (at altitudes between 850 and 700 hPa) of dust, transported across the Indo-Gangetic Plain to the northern BOB, arises primarily from the Thar Desert. Dust from remote sources in the far west reaches the southern BOB after traversing over and around the southern Indian Peninsula. Since dust from these distinct source regions have different mineral composition (hence optical properties) and undergo distinct changes during atmospheric transport, it is important to understand source-specific dust contribution and transport pathways to address dust–climate feedback.
Abstract
Making use of the extensive shipboard and aircraft measurements of aerosol properties over the oceanic regions surrounding the Indian peninsula, under the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB) field experiment during the premonsoon season (March–May), supplemented with long-term satellite data and chemical transport model simulations, investigations are made of the east–west and north–south gradients in aerosol properties and estimated radiative forcing, over the oceans around India. An eastward gradient has been noticed in most of the aerosol parameters that persisted both within the marine atmospheric boundary layer and above up to an altitude of ~6 km; the gradients being steeper at higher altitudes. It was also noticed that the north–south gradient has contrasting patterns over the Bay of Bengal and the Arabian Sea on the either side of the Indian peninsula. The aerosol-induced atmospheric heating rate increased from a low value of ≤0.1 K day−1 in the southwestern Arabian Sea to as high as ~0.5 K day−1 over the northeastern Bay of Bengal. The simulations of species-resolved spatial gradients have revealed that the observed gradients are the result of the strong modulations by anthropogenic species over the natural gradients, thereby emphasizing the role of human activities in imparting regional forcing. These large spatial gradients in aerosol forcing induced by mostly anthropogenic aerosols over the oceanic regions around the Indian peninsula can potentially affect the regional circulation patterns.
Abstract
Making use of the extensive shipboard and aircraft measurements of aerosol properties over the oceanic regions surrounding the Indian peninsula, under the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB) field experiment during the premonsoon season (March–May), supplemented with long-term satellite data and chemical transport model simulations, investigations are made of the east–west and north–south gradients in aerosol properties and estimated radiative forcing, over the oceans around India. An eastward gradient has been noticed in most of the aerosol parameters that persisted both within the marine atmospheric boundary layer and above up to an altitude of ~6 km; the gradients being steeper at higher altitudes. It was also noticed that the north–south gradient has contrasting patterns over the Bay of Bengal and the Arabian Sea on the either side of the Indian peninsula. The aerosol-induced atmospheric heating rate increased from a low value of ≤0.1 K day−1 in the southwestern Arabian Sea to as high as ~0.5 K day−1 over the northeastern Bay of Bengal. The simulations of species-resolved spatial gradients have revealed that the observed gradients are the result of the strong modulations by anthropogenic species over the natural gradients, thereby emphasizing the role of human activities in imparting regional forcing. These large spatial gradients in aerosol forcing induced by mostly anthropogenic aerosols over the oceanic regions around the Indian peninsula can potentially affect the regional circulation patterns.
Abstract
Drought affects virtually every region of the world, and potential shifts in its character in a changing climate are a major concern. This article presents a synthesis of current understanding of meteorological drought, with a focus on the large-scale controls on precipitation afforded by sea surface temperature (SST) anomalies, land surface feedbacks, and radiative forcings. The synthesis is primarily based on regionally focused articles submitted to the Global Drought Information System (GDIS) collection together with new results from a suite of atmospheric general circulation model experiments intended to integrate those studies into a coherent view of drought worldwide. On interannual time scales, the preeminence of ENSO as a driver of meteorological drought throughout much of the Americas, eastern Asia, Australia, and the Maritime Continent is now well established, whereas in other regions (e.g., Europe, Africa, and India), the response to ENSO is more ephemeral or nonexistent. Northern Eurasia, central Europe, and central and eastern Canada stand out as regions with few SST-forced impacts on precipitation on interannual time scales. Decadal changes in SST appear to be a major factor in the occurrence of long-term drought, as highlighted by apparent impacts on precipitation of the late 1990s “climate shifts” in the Pacific and Atlantic SST. Key remaining research challenges include (i) better quantification of unforced and forced atmospheric variability as well as land–atmosphere feedbacks, (ii) better understanding of the physical basis for the leading modes of climate variability and their predictability, and (iii) quantification of the relative contributions of internal decadal SST variability and forced climate change to long-term drought.
Abstract
Drought affects virtually every region of the world, and potential shifts in its character in a changing climate are a major concern. This article presents a synthesis of current understanding of meteorological drought, with a focus on the large-scale controls on precipitation afforded by sea surface temperature (SST) anomalies, land surface feedbacks, and radiative forcings. The synthesis is primarily based on regionally focused articles submitted to the Global Drought Information System (GDIS) collection together with new results from a suite of atmospheric general circulation model experiments intended to integrate those studies into a coherent view of drought worldwide. On interannual time scales, the preeminence of ENSO as a driver of meteorological drought throughout much of the Americas, eastern Asia, Australia, and the Maritime Continent is now well established, whereas in other regions (e.g., Europe, Africa, and India), the response to ENSO is more ephemeral or nonexistent. Northern Eurasia, central Europe, and central and eastern Canada stand out as regions with few SST-forced impacts on precipitation on interannual time scales. Decadal changes in SST appear to be a major factor in the occurrence of long-term drought, as highlighted by apparent impacts on precipitation of the late 1990s “climate shifts” in the Pacific and Atlantic SST. Key remaining research challenges include (i) better quantification of unforced and forced atmospheric variability as well as land–atmosphere feedbacks, (ii) better understanding of the physical basis for the leading modes of climate variability and their predictability, and (iii) quantification of the relative contributions of internal decadal SST variability and forced climate change to long-term drought.