Search Results

You are looking at 1 - 6 of 6 items for :

  • Author or Editor: Ka Kit Tung x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Hu Yang
and
Ka Kit Tung

Abstract

Water vapor feedback is one of the important factors that determine the response of the atmosphere to surface warming. To take into account the compensating drying effects in downdraft regions, averaging over the whole Tropics is necessary. However, this operation drastically reduces the number of degrees of freedom and raises questions concerning the statistical significance of any correlative results obtained using observational data. A more involved statistical analysis is performed here, using multiple datasets, including the global water vapor datasets of Special Sensor for Microwave/Imaging (column water), upper-tropospheric relative humidity, the Television Infrared Observational Satellite Operational Vertical Sounder retrieved upper-tropospheric specific humidity, and the surface temperature data from the National Centers for Environmental Prediction–National Center for Atmospheric Research Reanalysis dataset. The tropical-mean correlations between relative humidity and surface temperature cannot be established, but those between specific humidity and the surface temperature are found to be positive and shown to be statistically significant. This conclusion holds even when the averaging is done on the natural logarithm of the upper-tropospheric water vapor content. The effect on the tropical-mean outgoing longwave radiation is also discussed.

Full access
Yongyun Hu
and
Ka Kit Tung

Abstract

Using NCEP–NCAR 51-yr reanalysis data, the interannual and decadal variations of planetary wave activity and its relationship to stratospheric cooling, and the Northern Hemisphere Annular mode (NAM), are studied. It is found that winter stratospheric polar temperature is highly correlated on a year-to-year basis with the Eliassen–Palm (E–P) wave flux from the troposphere, implying a dynamical control of the former by the latter, as often suggested. Greater (lower) wave activity from the troposphere implies larger (smaller) poleward heat flux into the polar region, which leads to warmer (colder) polar temperature. A similar highly correlated antiphase relationship holds for E–P flux divergence and the strength of the polar vortex in the stratosphere. It is tempting to extrapolate these relationships found for interannual timescales to explain the recent stratospheric polar cooling trend in the past few decades as caused by decreased wave activity in the polar region. This speculation is not supported by the data. On timescales of decades the cooling trend is not correlated with the trend in planetary wave activity. In fact, it is found that planetary wave amplitude, E–P flux, and E–P flux convergence all show little statistical evidence of decrease in the past 51 yr, while the stratosphere is experiencing a cooling trend and the NAM index has a positive trend during the past 30 yr. This suggests that the trends in the winter polar temperature and the NAM index can reasonably be attributed to the radiative cooling of the stratosphere, due possibly to increasing greenhouse gases and ozone depletion. It is further shown that the positive trend of the NAM index in the past few decades is not through the inhibition of upward planetary wave propagation from the troposphere to the stratosphere, as previously suggested.

Full access
Yongyun Hu
and
Ka Kit Tung

Abstract

Using NCEP–NCAR reanalysis data, decadal trends in planetary wave activity in Northern Hemisphere high latitudes (50°–90°N) in late winter and early spring (January–February–March) were studied. Results show that wave activity in both the stratosphere and the troposphere has been largely reduced and exhibits statistically significant downward trends since the 1980s. In the stratosphere, the wave activity is decreased by about 30%, which is mainly due to less Eliassen–Palm (E–P) flux from the troposphere into the stratosphere. In the troposphere, the vertical E–P flux is reduced by about 30%, while equatorward horizontal E–P flux is increased by 130%. This suggests a significant refraction of planetary waves away from the high latitudes. The significant negative trends in wave activity in late winter are in contrast to the authors' previous finding of no significant changes in planetary wave activity in early winter.

The timing of the significant decline in wave activity, which starts from the early 1980s and exists only in late winter and springtime, suggests that such a decrease of wave activity is possibly a result of stratospheric ozone depletion in the Arctic. Therefore, a mechanism is proposed whereby Arctic ozone depletion leads to an enhanced meridional temperature gradient near the subpolar stratosphere, strengthening westerly winds. The strengthened winds refract planetary waves toward low latitudes and cause the reduction in wave activity in high latitudes.

Decreasing vertical E–P fluxes are found to extend to near the surface. At 850 mb, vertical E–P fluxes have been reduced by about 10% since 1979. Such a reduction in wave activity might be responsible for the observed late-winter and springtime warming over Northern Hemisphere high-latitude continents during the last two decades.

Full access
Jiansong Zhou
and
Ka-Kit Tung

Abstract

The purpose of the present work is to demonstrate that a solar cycle response exists in surface temperature using the longest global dataset available, which is in the form of 1854–2007 sea surface temperature (SST), with an emphasis on methods and procedures, data quality, and statistical tests and the removal of deterministic signals, such as volcano aerosol forcing and greenhouse gas warming. Using the method of composite-mean difference (CMD) projection, signals of warming during solar maximum and cooling during solar minimum years are found in the global SST over the 14 cycles, dispelling previous claims that the solar cycle response before 1920 is opposite to that of the modern era. The magnitude of the solar cycle response averaged over the oceans between 60°S and 60°N is about 0.1°C of warming for each W m−2 variation of the solar constant (but is slightly lower, at ~0.085°C, when periods of suspected bad data are averaged in, which is consistent with previous work). The signal is robust provided that the years near the Second World War are excluded, during which transitions from British ships to U.S. ships introduced warm bias in the SST, as recently pointed out by D. Thompson and his colleagues. Monte Carlo tests show that the extracted signal has less than 0.02% chance of being a random occurrence. This establishes the existence of a solar cycle response at the earth’s surface at high statistical confidence. Contamination of the signal by volcano aerosols is estimated using the multiple CMD inversion method and found to be small over this long record, although ENSO contamination varies depending on the period chosen but is also small.

The multidecadal trend of response to solar forcing is found to account for no more than a quarter of the observed warming in SST during the past 150 yr, under a reasonable but unproven assumption that the climate response to secular solar forcing and to solar cycle forcing has the same spatial pattern.

Full access
Yongyun Hu
,
Ka Kit Tung
, and
Jiping Liu

Abstract

Decadal trends are compared in various fields between Northern Hemisphere early winter, November–December (ND), and late-winter, February–March (FM), months using reanalysis data. It is found that in the extratropics and polar region the decadal trends display nearly opposite tendencies between ND and FM during the period from 1979 to 2003. Dynamical trends in late winter (FM) reveal that the polar vortex has become stronger and much colder and wave fluxes from the troposphere to the stratosphere are weaker, consistent with the positive trend of the Arctic Oscillation (AO) as found in earlier studies, while trends in ND appear to resemble a trend toward the low-index polarity of the AO. In the Tropics, the Hadley circulation shows significant intensification in both ND and FM, with stronger intensification in FM. Unlike the Hadley cell, the Ferrel cell shows opposite trends between ND and FM, with weakening in ND and strengthening in FM. Comparison of the observational results with general circulation model simulations is also discussed.

Full access
Xianyao Chen
,
John M. Wallace
, and
Ka-Kit Tung

Abstract

Empirical orthogonal function (EOF) analysis of global sea surface temperature yields modes in which interannual variability associated with ENSO and the lower-frequency variability associated with the Pacific decadal oscillation (PDO) and the Atlantic multidecadal oscillation (AMO) are confounded with one another and with the signature of global warming. The confounded EOFs exhibit overlapping centers of action with polarities of the perturbations juxtaposed such that the respective modes are mutually orthogonal in the global domain. When physical modes with different time scales appear in the same pair of EOFs, the principal component (PC) time series tend to be positively correlated in one frequency band and negatively correlated in another. Mode mixing may be a reflection of sampling variability or it may reflect the lack of spatial orthogonality of the physical modes themselves. Using sequences of pairwise orthogonal rotations of selected PCs, it is possible, without recourse to filtering, to recover a global warming mode with a bland spatial pattern and a nearly linear upward trend, along with dynamical modes, each with its own characteristic time scale, that resemble ENSO, the PDO, and the AMO. Novel elements of this analysis include a rationale for choosing the optimal angle for pairwise rotation and a simple algorithm for eliminating mode mixing between the dynamical modes and the global warming mode by transferring the linear trends from the former to the latter.

Full access