Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: Kalli Furtado x
- Journal of the Atmospheric Sciences x
- Refine by Access: All Content x
Abstract
High-resolution simulations of a Southern Ocean cyclone are compared to satellite-derived observations of liquid water path, cloud-top properties, and top-of-atmosphere radiative fluxes. The focus is on the cold-air-outflow region, where there are contributions to the hydrological budget from the microphysical growth of ice particles by riming and vapor deposition and transport by turbulent mixing. The sensitivity of the simulation to the parameterization of these processes is tested and the relative importance of ice-nucleation temperature is identified. It is shown that ice-phase microphysics is a key factor determining the phase composition of Southern Ocean clouds and physically reasonable parameterization changes are identified that affect the liquid water content of these clouds. The information gained from the sensitivity tests is applied to global model development, where it is shown that a modification to the riming parameterization improves climate mean-state biases in the Southern Ocean region.
Abstract
High-resolution simulations of a Southern Ocean cyclone are compared to satellite-derived observations of liquid water path, cloud-top properties, and top-of-atmosphere radiative fluxes. The focus is on the cold-air-outflow region, where there are contributions to the hydrological budget from the microphysical growth of ice particles by riming and vapor deposition and transport by turbulent mixing. The sensitivity of the simulation to the parameterization of these processes is tested and the relative importance of ice-nucleation temperature is identified. It is shown that ice-phase microphysics is a key factor determining the phase composition of Southern Ocean clouds and physically reasonable parameterization changes are identified that affect the liquid water content of these clouds. The information gained from the sensitivity tests is applied to global model development, where it is shown that a modification to the riming parameterization improves climate mean-state biases in the Southern Ocean region.
Abstract
The supersaturation equation for a vertically moving adiabatic cloud parcel is analyzed. The effects of turbulent updrafts are incorporated in the shape of a stochastic Lagrangian model, with spatial and time correlations expressed in terms of turbulent kinetic energy. Using the Fokker–Planck equation, the steady-state probability distributions of supersaturation are analytically computed for a number of approximations involving the time-scale separation between updraft fluctuations and phase relaxation, and droplet or ice particle size fluctuations. While the analytical results are presented in general for single-phase clouds, the calculated distributions are used to compute mixed-phase cloud properties—mixed fraction and mean liquid water content in an initially icy cloud—and are argued to be useful for generalizing and constructing new parameterization schemes.
Significance Statement
Supersaturation is the fuel for the development of clouds in the atmosphere. In this paper, our goal is to better understand the supersaturation budget of clouds embedded in a turbulent environment by analyzing the basic equations of cloud microphysics. It is found that the turbulent characteristics of an air parcel substantially affect the cloud’s supersaturation budget and hence its life cycle. This is also shown in the context of mixed-phase clouds where, depending on the turbulent regime, different liquid-to-ice ratios are found. Consequently, the theoretical approach of this paper is crucial to develop tools to parameterize small-scale atmospheric features, like clouds, into global circulation models to improve climate projections for the future.
Abstract
The supersaturation equation for a vertically moving adiabatic cloud parcel is analyzed. The effects of turbulent updrafts are incorporated in the shape of a stochastic Lagrangian model, with spatial and time correlations expressed in terms of turbulent kinetic energy. Using the Fokker–Planck equation, the steady-state probability distributions of supersaturation are analytically computed for a number of approximations involving the time-scale separation between updraft fluctuations and phase relaxation, and droplet or ice particle size fluctuations. While the analytical results are presented in general for single-phase clouds, the calculated distributions are used to compute mixed-phase cloud properties—mixed fraction and mean liquid water content in an initially icy cloud—and are argued to be useful for generalizing and constructing new parameterization schemes.
Significance Statement
Supersaturation is the fuel for the development of clouds in the atmosphere. In this paper, our goal is to better understand the supersaturation budget of clouds embedded in a turbulent environment by analyzing the basic equations of cloud microphysics. It is found that the turbulent characteristics of an air parcel substantially affect the cloud’s supersaturation budget and hence its life cycle. This is also shown in the context of mixed-phase clouds where, depending on the turbulent regime, different liquid-to-ice ratios are found. Consequently, the theoretical approach of this paper is crucial to develop tools to parameterize small-scale atmospheric features, like clouds, into global circulation models to improve climate projections for the future.