Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Karen Kosiba x
  • Ontario Winter Lake-effect Systems (OWLeS) x
  • Refine by Access: All Content x
Clear All Modify Search
Karen A. Kosiba, Joshua Wurman, Kevin Knupp, Kyle Pennington, and Paul Robinson


During the Ontario Winter Lake-effect Systems (OWLeS) field campaign, 12 long-lake-axis-parallel (LLAP) snowband events were sampled. Misovortices occurred in 11 of these events, with characteristic diameters of ~800 m, differential velocities of ~11 m s−1, and spacing between vortices of ~3 km. A detailed observational analysis of one such snowband provided further insight on the processes governing misovortex genesis and evolution, adding to the growing body of knowledge of these intense snowband features. On 15–16 December 2013, a misovortex-producing snowband was exceptionally well sampled by ground-based OWLeS instrumentation, which allowed for integrated finescale dual-Doppler and surface thermodynamic analyses. Similar to other studies, horizontal shearing instability (HSI), coupled with stretching, was shown to be the primary genesis mechanism. The HSI location was influenced by snowband-generated boundaries and location of the Arctic front relative to the band. Surface temperature observations, available for the first time, indicated that the misovortices formed along a baroclinic zone. Enhanced mixing, higher radar reflectivity, and increased precipitation rate accompanied the vortices. As the snowband came ashore, OWLeS participants indicated an increase in snowfall and white out conditions with the passage of the snowband. A sharp, small-scale pressure drop, coupled with winds of ~16 m s−1, marked the passage of a misovortex and may be typical of snowband misovortices.

Open access
Jake P. Mulholland, Jeffrey Frame, Stephen W. Nesbitt, Scott M. Steiger, Karen A. Kosiba, and Joshua Wurman


Recent lake-effect snow field projects in the eastern Great Lakes region have revealed the presence of misovortices with diameters between 40 and 4000 m along cyclonic horizontal shear zones within long-lake-axis-parallel bands. One particular band in which an abundance of misovortices developed occurred on 7 January 2014. The leading hypothesis for lake-effect misovortexgenesis is the release of horizontal shearing instability (HSI). An analysis of three-dimensional dual-Doppler wind syntheses reveals that two criteria for HSI are satisfied along the horizontal shear zone, strongly suggesting that HSI was the likely cause of the misovortices in this case. Furthermore, the general lack of anticyclonic–cyclonic vortex couplets throughout the event reveal that tilting of horizontal vorticity into the vertical is of less importance compared to the release of HSI and subsequent strengthening via vortex stretching. A WRF simulation depicts misovortices along the horizontal shear zone within the simulated band. The simulated vortices display remarkable similarities to the observed vortices in terms of intensity, depth, spacing, and size. The simulated vortices persist over the eastern end of the lake; however, once the vortices move inland, they quickly dissipate. HSI criteria are also calculated from the WRF simulation and are satisfied along the shear zone. Competing hypotheses of misovortexgenesis are presented, with results indicating that the release of HSI is the likely mechanism of vortex formation.

Full access
David A. R. Kristovich, Richard D. Clark, Jeffrey Frame, Bart Geerts, Kevin R. Knupp, Karen A. Kosiba, Neil F. Laird, Nicholas D. Metz, Justin R. Minder, Todd D. Sikora, W. James Steenburgh, Scott M. Steiger, Joshua Wurman, and George S. Young


Intense lake-effect snowstorms regularly develop over the eastern Great Lakes, resulting in extreme winter weather conditions with snowfalls sometimes exceeding 1 m. The Ontario Winter Lake-effect Systems (OWLeS) field campaign sought to obtain unprecedented observations of these highly complex winter storms.

OWLeS employed an extensive and diverse array of instrumentation, including the University of Wyoming King Air research aircraft, five university-owned upper-air sounding systems, three Center for Severe Weather Research Doppler on Wheels radars, a wind profiler, profiling cloud and precipitation radars, an airborne lidar, mobile mesonets, deployable weather Pods, and snowfall and particle measuring systems. Close collaborations with National Weather Service Forecast Offices during and following OWLeS have provided a direct pathway for results of observational and numerical modeling analyses to improve the prediction of severe lake-effect snowstorm evolution. The roles of atmospheric boundary layer processes over heterogeneous surfaces (water, ice, and land), mixed-phase microphysics within shallow convection, topography, and mesoscale convective structures are being explored.

More than 75 students representing nine institutions participated in a wide variety of data collection efforts, including the operation of radars, radiosonde systems, mobile mesonets, and snow observation equipment in challenging and severe winter weather environments.

Full access