Search Results

You are looking at 1 - 8 of 8 items for :

  • Author or Editor: Kelly Elder x
  • The Cold Land Processes Experiment (CLPX) x
  • Refine by Access: All Content x
Clear All Modify Search
Jeffrey S. Deems, Steven R. Fassnacht, and Kelly J. Elder

Abstract

Fractal dimensions derived from log–log variograms are useful for characterizing spatial structure and scaling behavior in snow depth distributions. This study examines the temporal consistency of snow depth scaling features at two sites using snow depth distributions derived from lidar datasets collected in 2003 and 2005. The temporal snow accumulation patterns in these two years were substantially different, but both years represent nearly average 1 April accumulation depths for these sites, with consistent statistical distributions. Two distinct fractal regions are observed in each log–log variogram, separated by a scale break, which indicates a length scale at which a substantial change in the driving processes exists. The lag distance of the scale break is 15 m at the Walton Creek site and 40 m at the Alpine site. The datasets show consistent fractal dimensions and scale break distances between the two years, suggesting that the scaling features observed in spatial snow depth distributions are largely determined by physiography and vegetation characteristics and are relatively insensitive to annual variations in snowfall. Directional variograms also show consistent patterns between years, with smaller fractal dimensions aligned with the dominant wind direction at each site.

Full access
Kelly Elder, Don Cline, Glen E. Liston, and Richard Armstrong

Abstract

A field measurement program was undertaken as part NASA’s Cold Land Processes Experiment (CLPX). Extensive snowpack and soil measurements were taken at field sites in Colorado over four study periods during the two study years (2002 and 2003). Measurements included snow depth, density, temperature, grain type and size, surface wetness, surface roughness, and canopy cover. Soil moisture measurements were made in the near-surface layer in snow pits. Measurements were taken in the Fraser valley, North Park, and Rabbit Ears Pass areas of Colorado. Sites were chosen to gain a wide representation of snowpack types and physiographies typical of seasonally snow-covered regions of the world. The data have been collected with rigorous protocol to ensure consistency and quality, and they have undergone several levels of quality assurance to produce a high-quality spatial dataset for continued cold lands hydrological research. The dataset is archived at the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado.

Full access
Kelly Elder, Angus Goodbody, Don Cline, Paul Houser, Glen E. Liston, Larry Mahrt, and Nick Rutter

Abstract

A short-term meteorological database has been developed for the Cold Land Processes Experiment (CLPX). This database includes meteorological observations from stations designed and deployed exclusively for CLPX as well as observations available from other sources located in the small regional study area (SRSA) in north-central Colorado. The measured weather parameters include air temperature, relative humidity, wind speed and direction, barometric pressure, short- and longwave radiation, leaf wetness, snow depth, snow water content, snow and surface temperatures, volumetric soil moisture content, soil temperature, precipitation, water vapor flux, carbon dioxide flux, and soil heat flux. The CLPX weather stations include 10 main meteorological towers, 1 tower within each of the nine intensive study areas (ISA) and one near the local scale observation site (LSOS); and 36 simplified towers, with one tower at each of the four corners of each of the nine ISAs, which measured a reduced set of parameters. An eddy covariance system within the North Park mesocell study area (MSA) collected a variety of additional parameters beyond the 10 standard CLPX tower components. Additional meteorological observations come from a variety of existing networks maintained by the U.S. Forest Service, U.S. Geological Survey, Natural Resource Conservation Service, and the Institute of Arctic and Alpine Research. Temporal coverage varies from station to station, but it is most concentrated during the 2002/03 winter season. These data are useful in local meteorological energy balance research and for model development and testing. These data can be accessed through the National Snow and Ice Data Center Web site.

Full access
Glen E. Liston, Christopher A. Hiemstra, Kelly Elder, and Donald W. Cline

Abstract

The Cold Land Processes Experiment (CLPX) had a goal of describing snow-related features over a wide range of spatial and temporal scales. This required linking disparate snow tools and datasets into one coherent, integrated package. Simulating realistic high-resolution snow distributions and features requires a snow-evolution modeling system (SnowModel) that can distribute meteorological forcings, simulate snowpack accumulation and ablation processes, and assimilate snow-related observations. A SnowModel was developed and used to simulate winter snow accumulation across three 30 km × 30 km domains, enveloping the CLPX mesocell study areas (MSAs) in Colorado. The three MSAs have distinct topography, vegetation, meteorological, and snow characteristics. Simulations were performed using a 30-m grid increment and spanned the snow accumulation season (1 October 2002–1 April 2003). Meteorological forcing was provided by 27 meteorological stations and 75 atmospheric analyses grid points, distributed using a meteorological model (MicroMet). The simulations included a data assimilation model (SnowAssim) that adjusted simulated snow water equivalent (SWE) toward ground-based and airborne SWE observations. The observations consisted of SWE over three 1 km × 1 km intensive study areas (ISAs) for each MSA and a collection of 117 airborne gamma observations, each integrating area 10 km long by 300 m wide. Simulated SWE distributions displayed considerably more spatial heterogeneity than the observations alone, and the simulated distribution patterns closely fit the current understanding of snow evolution processes and observed snow depths. This is the result of the MicroMet/SnowModel’s relatively finescale representations of orographic precipitation, elevation-dependant snowmelt, wind redistribution, and snow–vegetation interactions.

Full access
Glen E. Liston, Daniel L. Birkenheuer, Christopher A. Hiemstra, Donald W. Cline, and Kelly Elder

Abstract

This paper describes the Local Analysis and Prediction System (LAPS) and the 20-km horizontal grid version of the Rapid Update Cycle (RUC20) atmospheric analyses datasets, which are available as part of the Cold Land Processes Field Experiment (CLPX) data archive. The LAPS dataset contains spatially and temporally continuous atmospheric and surface variables over Colorado, Wyoming, and parts of the surrounding states. The analysis used a 10-km horizontal grid with 21 vertical levels and an hourly temporal resolution. The LAPS archive includes forty-six 1D surface fields and nine 3D upper-air fields, spanning the period 1 September 2001 through 31 August 2003. The RUC20 dataset includes hourly 3D atmospheric analyses over the contiguous United States and parts of southern Canada and northern Mexico, with 50 vertical levels. The RUC20 archive contains forty-six 1D surface fields and fourteen 3D upper-air fields, spanning the period 1 October 2002 through 31 September 2003. The datasets are archived at the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado.

Full access
Robert E. Davis, Thomas H. Painter, Rick Forster, Don Cline, Richard Armstrong, Terry Haran, Kyle McDonald, and Kelly Elder

Abstract

This paper describes satellite data collected as part of the 2002/03 Cold Land Processes Experiment (CLPX). These data include multispectral and hyperspectral optical imaging, and passive and active microwave observations of the test areas. The CLPX multispectral optical data include the Advanced Very High Resolution Radiometer (AVHRR), the Landsat Thematic Mapper/Enhanced Thematic Mapper Plus (TM/ETM+), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Multi-angle Imaging Spectroradiometer (MISR). The spaceborne hyperspectral optical data consist of measurements acquired with the NASA Earth Observing-1 (EO-1) Hyperion imaging spectrometer. The passive microwave data include observations from the Special Sensor Microwave Imager (SSM/I) and the Advanced Microwave Scanning Radiometer (AMSR) for Earth Observing System (EOS; AMSR-E). Observations from the Radarsat synthetic aperture radar and the SeaWinds scatterometer flown on QuikSCAT make up the active microwave data.

Full access
Don Cline, Simon Yueh, Bruce Chapman, Boba Stankov, Al Gasiewski, Dallas Masters, Kelly Elder, Richard Kelly, Thomas H. Painter, Steve Miller, Steve Katzberg, and Larry Mahrt

Abstract

This paper describes the airborne data collected during the 2002 and 2003 Cold Land Processes Experiment (CLPX). These data include gamma radiation observations, multi- and hyperspectral optical imaging, optical altimetry, and passive and active microwave observations of the test areas. The gamma observations were collected with the NOAA/National Weather Service Gamma Radiation Detection System (GAMMA). The CLPX multispectral optical data consist of very high-resolution color-infrared orthoimagery of the intensive study areas (ISAs) by TerrainVision. The airborne hyperspectral optical data consist of observations from the NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Optical altimetry measurements were collected using airborne light detection and ranging (lidar) by TerrainVision. The active microwave data include radar observations from the NASA Airborne Synthetic Aperture Radar (AIRSAR), the Jet Propulsion Laboratory’s Polarimetric Ku-band Scatterometer (POLSCAT), and airborne GPS bistatic radar data collected with the NASA GPS radar delay mapping receiver (DMR). The passive microwave data consist of observations collected with the NOAA Polarimetric Scanning Radiometer (PSR). All of the airborne datasets described here and more information describing data collection and processing are available online.

Full access
Janet Hardy, Robert Davis, Yeohoon Koh, Don Cline, Kelly Elder, Richard Armstrong, Hans-Peter Marshall, Thomas Painter, Gilles Castres Saint-Martin, Roger DeRoo, Kamal Sarabandi, Tobias Graf, Toshio Koike, and Kyle McDonald

Abstract

The local scale observation site (LSOS) is the smallest study site (0.8 ha) of the 2002/03 Cold Land Processes Experiment (CLPX) and is located within the Fraser mesocell study area. It was the most intensively measured site of the CLPX, and measurements here had the greatest temporal component of all CLPX sites. Measurements made at the LSOS were designed to produce a comprehensive assessment of the snow, soil, and vegetation characteristics viewed by the ground-based remote sensing instruments. The objective of the ground-based microwave remote sensing was to collect time series of active and passive microwave spectral signatures over snow, soil, and forest, which is coincident with the intensive physical characterization of these features. Ground-based remote sensing instruments included frequency modulated continuous wave (FMCW) radars operating over multiple microwave bandwidths; the Ground-Based Microwave Radiometer (GBMR-7) operating at channels 18.7, 23.8, 36.5, and 89 GHz; and in 2003, an L-, C-, X- and Ku-band scatterometer radar system. Snow and soil measurements included standard snow physical properties, snow wetness, snow depth transects, and soil moisture. The stem and canopy temperature and xylem sap flux of several trees were monitored continuously. Five micrometeorological towers monitored ambient conditions and provided forcing datasets for 1D snow and soil models. Arrays of pyranometers (0.3–3 μm) and a scanning thermal radiometer (8–12 μm) characterized the variability of radiative receipt in the forests. A field spectroradiometer measured the hyperspectral hemispherical-directional reflectance of the snow surface. These measurements, together with the ground-based remote sensing, provide the framework for evaluating and improving microwave radiative transfer models and coupling them to land surface models. The dataset is archived at the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado.

Full access