Search Results

You are looking at 1 - 7 of 7 items for :

  • Author or Editor: Kelly Lombardo x
  • Monthly Weather Review x
  • Refine by Access: All Content x
Clear All Modify Search
Kelly A. Lombardo
and
Brian A. Colle

Abstract

Organized convective structures over the northeastern United States were classified for two warm seasons (May–August) using 2-km composite radar [i.e., the National Operational Weather Radar (NOWrad)] data. Nine structures were identified: three types of cellular convection (clusters of cells, isolated cells, and broken lines), five types of linear convection (lines with no stratiform precipitation, lines with trailing stratiform precipitation, lines with parallel stratiform precipitation, lines with leading stratiform precipitation, and bow echoes), and one nonlinear system. The occurrence of all structures decreases from the western Appalachian slopes eastward to the Atlantic coast. Isolated cellular convection forms primarily during the morning to late afternoon (1200–2100 UTC) mainly over the high terrain. Clusters of cells form primarily over the Appalachians and the Atlantic coastal plain during the daytime (1200–0000 UTC). Linear convection is favored from midafternoon to early evening (1800–0000 UTC) over land areas. Nonlinear systems develop mainly from midafternoon to late evening (1800–0600 UTC) over the inland areas and over the coastal zone during the early morning (∼1200 UTC).

Composites using the North American Regional Reanalysis (NARR) highlight the ambient conditions for three main convective structures: cellular, linear, and nonlinear. Cellular convection initiates with limited quasigeostrophic forcing and moderate instability [i.e., average most unstable CAPE (MUCAPE) ∼973 J kg−1]. A majority of cells develop in orographically favored upslope areas. Linear convection organizes along surface troughs, supported by 900-hPa frontogenesis and an average ambient MUCAPE of ∼1011 J kg−1. Nonlinear convection organizes along warm fronts associated with larger-scale baroclinic systems, and the MUCAPE is relatively small (∼207 J kg−1).

Full access
Kelly Lombardo
and
Brian A. Colle

Abstract

This paper explores the structural evolution and physical processes that explain the modification of two quasi-linear convective systems (QLCSs) that encountered the densely populated New York City–Atlantic coastal region. One QLCS on 31 May 2002 traversed the Atlantic coastal boundary with little change in its intensity, producing widespread severe wind damage across New York City and Long Island. During this event, warm air advection at 925 hPa helped destabilize the layer above this level over the coastal zone, while the marine boundary layer deepened below this level. The 0–3-km line-perpendicular vertical wind shear was relatively strong, which supported ascent along the leading edge of the diabatically generated cold pool. The surface-based convective system became slightly elevated as it moved over the marine waters. In contrast, the 23 July 2002 QLCS decayed upon encountering the Atlantic coastline, despite its coincidence with a surface cold front. The most unstable CAPE values during this decaying event were 400–800 J kg−1 greater than the sustaining 31 May event, though the 0–3-km vertical wind shear was approximately half. Weaker shear likely contributed to limited ascent along the leading edge of the surface based cold pool, and ultimately the demise of the convective line. Sensitivity tests highlight the importance of the relationship between the cold pool and vertical shear during these two events, and illustrate the limited role of the marine layer in modifying the evolution of these two convective systems.

Full access
Matthew R. Kumjian
and
Kelly A. Lombardo

Abstract

The recent Weather Surveillance Radar-1988 Doppler (WSR-88D) network upgrade to dual-polarization capabilities allows for bulk characterization of microphysical processes in northeastern U.S. winter storms for the first time. In this study, the quasi-vertical profile (QVP) technique (wherein data from a given elevation angle scan are azimuthally averaged and the range coordinate is converted to height) is extended and applied to polarimetric WSR-88D observations of six Northeast winter storms to survey their evolving, bulk vertical microphysical and kinematic structures. These analyses are supplemented using hourly analyses from the Rapid Refresh (RAP) model. Regions of ascent inferred from QVPs were consistently associated with notable polarimetric signatures, implying planar crystal growth when near −15°C, and riming and secondary ice production at higher temperatures. The heaviest snowfall occurred most often when ascent and enhanced propagation differential phase shift ( ) occurred near −15°C. When available, limited surface observations confirmed heavy snowfall rates and revealed large snow-to-liquid ratios at these times. Other cases revealed sudden, large melting-layer excursions associated with precipitation-type transitions near the surface. RAP analyses failed to capture such complex evolution, demonstrating the added value of dual-polarization radar observations in these scenarios and the potential use of radar data for assessing model performance in real time. These insights are a preliminary step toward better understanding the complex processes in northeastern U.S. winter storms.

Full access
Kelly A. Lombardo
and
Brian A. Colle

Abstract

Quasi-linear convective systems (QLCSs) crossing the Atlantic coastline over the northeastern United States were classified into three categories based on their evolution upon encountering the coast. Composite analyses show that convective lines that decay near the Atlantic coast or slowly decay over the coastal waters are associated with 900–800-hPa frontogenesis, with greater ambient 0–3-km vertical wind shear for the slowly decaying lines. Systems that maintain their intensity over the coastal ocean are associated with 900-hPa warm air advection, but with little low-level frontogenetical forcing. Neither sea surface temperature nor ambient instability was a clear delimiter between the three evolutions. Sustaining convective lines have the strongest environmental 0–3-km shear of the three types, and this shear increases as these systems approach the coast. In contrast, the low-level shear decreases as decaying and slowly decaying convective lines move toward the Atlantic coastline. There was also a weaker mean surface cold pool for the sustaining systems than the two types of decaying QLCSs, which may favor a more long-lived system if the horizontal vorticity from this cold pool is more balanced by low-level vertical shear.

Full access
Kelly Lombardo
and
Matthew R. Kumjian

Abstract

During the early morning hours of 5 November 2018, a mature mesoscale convective system (MCS) propagated discretely over the second-most populous province of Argentina, Córdoba Province, during the Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations–Cloud, Aerosol, and Complex Terrain Interactions (RELAMPAGO–CACTI) joint field campaigns. Storm behavior was modified by the Sierras de Córdoba, a north–south-oriented regional mountain chain located in the western side of the province. Here, we present observational evidence of the discrete propagation event and the impact of the mountains on the associated physical processes. As the mature MCS moved northeastward and approached the windward side of the mountains, isolated convective cells developed downstream in the mountain lee, 20–50 km ahead of the main convective line. Cells were initiated by an undular bore, which formed as the MCS cold pool moved over the mountain ridge and perturbed the leeside nocturnal, low-level stable layer. The field of isolated cells organized into a new MCS, which continued to move northeastward, while the parent storm decayed as it traversed the mountains. Only the southern portion of the storm propagated discretely, due to variability in mountain height along the chain. In the north, taller mountain peaks prevented the MCS cold pool from moving over the terrain and perturbing the stable layer. Consequently, no bore was generated, and no discrete propagation occurred in this region. To the south, the MCS cold pool was able to traverse the lower-relief mountains, and the discrete propagation was successful.

Full access
Kelly Lombardo
,
Eric Sinsky
,
Yan Jia
,
Michael M. Whitney
, and
James Edson

Abstract

Mesoscale simulations of sea breezes are sensitive to the analysis product used to initialize the simulations, primarily due to the representation of the coastline and the coastal sea surface temperatures (SSTs) in the analyses. The use of spatially coarse initial conditions, relative to the horizontal resolution of the mesoscale model grid, can introduce errors in the representation of coastal SSTs, in part due to the incorrect designation of the land surface. As a result, portions of the coastal ocean are initialized with land surface temperature values and vice versa. The diurnal variation of the sea surface is typically smaller than over land on meso- and synoptic-scale time scales. Therefore, it is common practice to retain a temporally static SST in numerical simulations, causing initial SST errors to persist through the duration of the simulation. These SST errors influence horizontal coastal temperature and humidity gradients and thereby the development of the sea-breeze circulations.

The authors developed a technique to modify the initial surface conditions created from a reanalysis product [North American Regional Reanalysis (NARR)] for simulations of two sea-breeze events over the New England coast to more accurately represent the finescale structure of the coastline and the spatial representation of the coastal land surface and SST. Using this technique, the coastal SST (2-m temperature) RMSE is reduced from as much as 25°–1°C (7°–1°C), contributing to a more accurate propagation of the sea-breeze front. Techniques described in this work may be important for mesoscale simulations and forecasts of other coastal phenomena.

Full access
Shawn M. Milrad
,
Kelly Lombardo
,
Eyad H. Atallah
, and
John R. Gyakum

Abstract

The 19–21 June 2013 Alberta flood was the second costliest ($6 billion CAD) natural disaster in Canadian history, trailing only the 2016 Fort McMurray, Alberta, Canada, wildfires. One of the primary drivers was an extreme rainfall event that resulted in 75–150 mm of precipitation in the foothills west of Calgary, Canada. Here, the mesoscale dynamics and thermodynamics that contributed to the extreme rainfall event are elucidated through high-resolution numerical model simulations. In addition, terrain reduction model sensitivity experiments using Gaussian smoothing techniques quantify the importance of orography in producing the extreme rainfall event. It is suggested that the extreme rainfall event was initially characterized by the formation of a surface cyclone on the eastern side of the Canadian Rockies due to quasigeostrophic (QG) mechanisms. Orographic processes and diabatic heating feedbacks maintained the surface cyclone throughout the event, extending the duration of both easterly upslope flow and QG forcing for ascent in the flood region. The long-duration ascent and associated condensational heat release in the flood region vertically redistributed potential vorticity, anchoring and further extending the duration of the surface cyclone, upslope flow, and the rainfall. Although the magnitudes of ascent and precipitation were smaller in 10% and 25% reduced terrain simulations, only a terrain reduction of greater than 25% drastically altered the location and magnitude of the heaviest precipitation and the associated physical mechanisms.

Full access