Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Kenneth E. Pickering x
  • Refine by Access: All Content x
Clear All Modify Search
Kenneth E. Pickering, Anne M. Thompson, Donna P. McNamara, and Mark R. Schoeberl

Abstract

The authors have compared isentropic trajectories computed from meteorological fields from different analysis centers. The analysis was performed for the South Atlantic, where a springtime maximum in tropospheric ozone has sparked considerable interest in the transport meteorology. Using the model of Schoeberl et al., isentropic forward trajectories were computed from an array of points over southern Africa and backward trajectories from an array of points over the South Atlantic. The model was run for an 8-day period in October 1989 with input taken from the twice-daily global gridded data fields from the National Meteorological Center (NMC) and from the European Centre for Medium-Range Weather Forecasts (BCMWF). There were large differences between the trajectories based on the two fields in terms of travel distance, horizontal separation, and vertical separation. Best comparisons for individual trajectories were found in the low-latitude easterlies, and the poorest comparisons were found in the westerlies and in the vicinity of the center of the South Atlantic subtropical anticyclone. Significant differences in wind speeds between the two analyses also led to large trajectory differences.

Trajectories were also computed using once-daily NMC fields. The effect of this degradation of the data was small. Trajectories computed from balanced winds computed from the NMC geopotential height and temperature fields showed the largest differences when compared with the ECMWF trajectories. The balanced wind fields should not be used in trajectory construction in the tropical lower troposphere.

It is difficult to make a definitive recommendation concerning which set of fields should be used in future transport analysts in this region due to the very large trajectory differences found in this analysis and the lack of any independent verification data. Any extensive analysis of transport in this region should be done only in conjunction with considerable additional data collection.

Full access
Christopher P. Loughner, Dale J. Allen, Da-Lin Zhang, Kenneth E. Pickering, Russell R. Dickerson, and Laura Landry

Abstract

Urban heat island (UHI) effects can strengthen heat waves and air pollution episodes. In this study, the dampening impact of urban trees on the UHI during an extreme heat wave in the Washington, D.C., and Baltimore, Maryland, metropolitan area is examined by incorporating trees, soil, and grass into the coupled Weather Research and Forecasting model and an urban canopy model (WRF-UCM). By parameterizing the effects of these natural surfaces alongside roadways and buildings, the modified WRF-UCM is used to investigate how urban trees, soil, and grass dampen the UHI. The modified model was run with 50% tree cover over urban roads and a 10% decrease in the width of urban streets to make space for soil and grass alongside the roads and buildings. Results show that, averaged over all urban areas, the added vegetation decreases surface air temperature in urban street canyons by 4.1 K and road-surface and building-wall temperatures by 15.4 and 8.9 K, respectively, as a result of tree shading and evapotranspiration. These temperature changes propagate downwind and alter the temperature gradient associated with the Chesapeake Bay breeze and, therefore, alter the strength of the bay breeze. The impact of building height on the UHI shows that decreasing commercial building heights by 8 m and residential building heights by 2.5 m results in up to 0.4-K higher daytime surface and near-surface air temperatures because of less building shading and up to 1.2-K lower nighttime temperatures because of less longwave radiative trapping in urban street canyons.

Full access
Christopher P. Loughner, Maria Tzortziou, Melanie Follette-Cook, Kenneth E. Pickering, Daniel Goldberg, Chinmay Satam, Andrew Weinheimer, James H. Crawford, David J. Knapp, Denise D. Montzka, Glenn S. Diskin, and Russell R. Dickerson

Abstract

Meteorological and air-quality model simulations are analyzed alongside observations to investigate the role of the Chesapeake Bay breeze on surface air quality, pollutant transport, and boundary layer venting. A case study was conducted to understand why a particular day was the only one during an 11-day ship-based field campaign on which surface ozone was not elevated in concentration over the Chesapeake Bay relative to the closest upwind site and why high ozone concentrations were observed aloft by in situ aircraft observations. Results show that southerly winds during the overnight and early-morning hours prevented the advection of air pollutants from the Washington, D.C., and Baltimore, Maryland, metropolitan areas over the surface waters of the bay. A strong and prolonged bay breeze developed during the late morning and early afternoon along the western coastline of the bay. The strength and duration of the bay breeze allowed pollutants to converge, resulting in high concentrations locally near the bay-breeze front within the Baltimore metropolitan area, where they were then lofted to the top of the planetary boundary layer (PBL). Near the top of the PBL, these pollutants were horizontally advected to a region with lower PBL heights, resulting in pollution transport out of the boundary layer and into the free troposphere. This elevated layer of air pollution aloft was transported downwind into New England by early the following morning where it likely mixed down to the surface, affecting air quality as the boundary layer grew.

Full access
Mary C. Barth, Christopher A. Cantrell, William H. Brune, Steven A. Rutledge, James H. Crawford, Heidi Huntrieser, Lawrence D. Carey, Donald MacGorman, Morris Weisman, Kenneth E. Pickering, Eric Bruning, Bruce Anderson, Eric Apel, Michael Biggerstaff, Teresa Campos, Pedro Campuzano-Jost, Ronald Cohen, John Crounse, Douglas A. Day, Glenn Diskin, Frank Flocke, Alan Fried, Charity Garland, Brian Heikes, Shawn Honomichl, Rebecca Hornbrook, L. Gregory Huey, Jose L. Jimenez, Timothy Lang, Michael Lichtenstern, Tomas Mikoviny, Benjamin Nault, Daniel O’Sullivan, Laura L. Pan, Jeff Peischl, Ilana Pollack, Dirk Richter, Daniel Riemer, Thomas Ryerson, Hans Schlager, Jason St. Clair, James Walega, Petter Weibring, Andrew Weinheimer, Paul Wennberg, Armin Wisthaler, Paul J. Wooldridge, and Conrad Ziegler

Abstract

The Deep Convective Clouds and Chemistry (DC3) field experiment produced an exceptional dataset on thunderstorms, including their dynamical, physical, and electrical structures and their impact on the chemical composition of the troposphere. The field experiment gathered detailed information on the chemical composition of the inflow and outflow regions of midlatitude thunderstorms in northeast Colorado, west Texas to central Oklahoma, and northern Alabama. A unique aspect of the DC3 strategy was to locate and sample the convective outflow a day after active convection in order to measure the chemical transformations within the upper-tropospheric convective plume. These data are being analyzed to investigate transport and dynamics of the storms, scavenging of soluble trace gases and aerosols, production of nitrogen oxides by lightning, relationships between lightning flash rates and storm parameters, chemistry in the upper troposphere that is affected by the convection, and related source characterization of the three sampling regions. DC3 also documented biomass-burning plumes and the interactions of these plumes with deep convection.

Full access