Search Results

You are looking at 1 - 7 of 7 items for :

  • Author or Editor: Kenneth Howard x
  • Journal of Atmospheric and Oceanic Technology x
  • Refine by Access: All Content x
Clear All Modify Search
Carrie Langston
,
Jian Zhang
, and
Kenneth Howard

Abstract

Communities and many industries are affected by severe weather and have a need for real-time accurate Weather Surveillance Radar-1988 Doppler (WSR-88D) data spanning several regions. To fulfill this need the National Severe Storms Laboratory has developed a Four-Dimensional Dynamic Grid (4DDG) to accurately represent discontinuous radar reflectivity data over a continuous 4D domain. The objective is to create a seamless, rapidly updating radar mosaic that is well suited for use by forecasters in addition to advance radar applications such as qualitative precipitation estimates. Several challenges are associated with creating a 3D radar mosaic given the nature of radar data and the spherical coordinates of radar observations. The 4DDG uses spatial and temporal weighting schemes to overcome these challenges, with the intention of applying minimal smoothing to the radar data. Previous multiple radar mosaics functioned in two or three dimensions using a variety of established weighting schemes. The 4DDG has the advantage of temporal weighting to smooth radar observations over time. Using an exponentially decaying weighting scheme, this paper will examine different weather scenarios and show the effects of temporal smoothing using different time scales. Specifically, case examples of the 4DDG approach involving a rapidly evolving convective event and a slowly developing stratiform weather regime are considered.

Full access
Jian Zhang
,
Carrie Langston
, and
Kenneth Howard

Abstract

The occurrence of a bright band, a layer of enhanced reflectivity due to melting of aggregated snow, increases uncertainties in radar-based quantitative precipitation estimation (QPE). The height of the brightband layer is an indication of 0°C isotherm and can be useful in identifying areas of potential icing for aviation and in the data assimilation for numerical weather prediction (NWP). Extensive analysis of vertical profiles of reflectivity (VPRs) derived from the Weather Surveillance Radar-1988 Doppler (WSR-88D) base level data showed that the brightband signature could be easily identified from the VPRs. As a result, an automated brightband identification (BBID) scheme has been developed. The BBID algorithm can determine from a volume scan mean VPR and a background freezing level height from a numerical weather prediction model whether a bright band exists and the height of the brightband layer. The paper presents a description of the BBID scheme and evaluation results from a large dataset from WSR-88D radars in different geographical regions and seasons.

Full access
Jian Zhang
,
Kenneth Howard
, and
J. J. Gourley

Abstract

The advent of Internet-2 and effective data compression techniques facilitates the economic transmission of base-level radar data from the Weather Surveillance Radar-1988 Doppler (WSR-88D) network to users in real time. The native radar spherical coordinate system and large volume of data make the radar data processing a nontrivial task, especially when data from several radars are required to produce composite radar products. This paper investigates several approaches to remapping and combining multiple-radar reflectivity fields onto a unified 3D Cartesian grid with high spatial (≤1 km) and temporal (≤5 min) resolutions. The purpose of the study is to find an analysis approach that retains physical characteristics of the raw reflectivity data with minimum smoothing or introduction of analysis artifacts. Moreover, the approach needs to be highly efficient computationally for potential operational applications. The appropriate analysis can provide users with high-resolution reflectivity data that preserve the important features of the raw data, but in a manageable size with the advantage of a Cartesian coordinate system.

Various interpolation schemes were evaluated and the results are presented here. It was found that a scheme combining a nearest-neighbor mapping on the range and azimuth plane and a linear interpolation in the elevation direction provides an efficient analysis scheme that retains high-resolution structure comparable to the raw data. A vertical interpolation is suited for analyses of convective-type echoes, while vertical and horizontal interpolations are needed for analyses of stratiform echoes, especially when large vertical reflectivity gradients exist. An automated brightband identification scheme is used to recognize stratiform echoes. When mosaicking multiple radars onto a common grid, a distance-weighted mean scheme can smooth possible discontinuities among radars due to calibration differences and can provide spatially consistent reflectivity mosaics. These schemes are computationally efficient due to their mathematical simplicity. Therefore, the 3D multiradar mosaic scheme can serve as a good candidate for providing high-spatial- and high-temporal-resolution base-level radar data in a Cartesian framework in real time.

Full access
Karl D. Moore
,
Kenneth J. Voss
, and
Howard R. Gordon

Abstract

A measurement system for determining the spectral reflectance of whitecaps in the open ocean is described. The upwelling radiance is obtained from a ship by observing a small region of the water surface over time using a six-channel radiometer (410, 440, 510, 550, 670, and 860 nm) extended from the bow of the ship. Downwelling irradiance is simultaneously measured and used to provide surface reflectance. The system includes a TV camera mounted beside the radiometer that provides a visual reference of surface events. Air/water temperature and wind speed/direction are also measured along with global positioning system data. Calibration procedures and radiometric characterization of the system for operation under different sky conditions and solar zenith angles are emphasized so that full advantage is taken of ship time whenever whitecap events occur. The radiometer was operated at sea and examples of the spectral reflectance of different foam types (thick foam layers to thin residual patches) generated by the ship’s bow in coastal waters are presented and found to vary spectrally. The presence of submerged bubbles in the foam measurement results in a lower reflectance at the longer wavelengths. For wavebands in the visible region, the spectral reflectance values tend to equalize with higher reflecting foam from thicker foam layers.

Full access
David J. Stensrud
,
Michael H. Jain
,
Kenneth W. Howard
, and
Robert A. Maddox

Abstract

A brief field project was conducted during July 1988 to assess the potential for Next Generation Weather Radar (NEXRAD), 404-MHz radar wind profilers, and digital sounding systems to monitor the low-level wind field during clear-air conditions. The low-level jet was chosen as the phenomenon of interest because it is neither well sampled nor resolved by the current upper-air network, yet it is a common feature of mesoscale convective system and severe thunderstorm environments. Data were collected under quiescent synoptic conditions during several low-level jet events using a 10-cm NEXRAD-like Doppler radar and a digital sounding system colocated in Norman, Oklahoma. These data suggest that the areal-averaged horizontal winds calculated from the Doppler radar data using the Velocity Azimuth Display (VAD) technique are comparable with the winds observed using a digital sounding system, except under weak wind conditions. However, the vertical spacing of 304 m (1000 ft) between levels of horizontal VAD calculated winds, as currently proposed for NEXRAD, may not be of sufficient resolution to document the detailed wind structure of these events. The height of the maximum wind speed of the low-level jet on all days studied was below the planned lowest observation range gate of the 404-MHz radar wind profiler, indicating that a combination of NEXRAD and profiler data might be needed to sample the important wind field structure of the lower atmosphere. Lastly, the National Weather Service rawinsonde data processing software affects the vertical resolution of the low-level wind field in operational, and therefore archived, upper-air soundings. The procedure used to calculate NWS 1000 ft winds actually damps the wind speed profile and artificially increases the height of the level of maximum wind speed associated with the low-level jet. The appropriateness of these highly smoothed 1000 ft winds for input into sophisticated mesoscale weather prediction models should be considered.

Full access
Kenneth J. Voss
,
Howard R. Gordon
,
Stephanie Flora
,
B. Carol Johnson
,
Mark Yarbrough
,
Michael Feinholz
, and
Terrence Houlihan

Abstract

The upwelling radiance attenuation coefficient K Lu in the upper 10 m of the water column can be significantly influenced by inelastic scattering processes and thus will vary even with homogeneous water properties. The Marine Optical Buoy (MOBY), the primary vicarious calibration site for many ocean color sensors, makes measurements of the upwelling radiance L u at 1, 5, and 9 m, and uses these values to determine K Lu and to propagate the upwelling radiance directed toward the zenith, L u , at 1 m to and through the surface. Inelastic scattering causes the K Lu derived from the measurements to be an underestimate of the true K Lu from 1 m to the surface at wavelengths greater than 575 nm; thus, the derived water-leaving radiance is underestimated at wavelengths longer than 575 nm. A method to correct this K Lu, based on a model of the upwelling radiance including Raman scattering and chlorophyll fluorescence, has been developed that corrects this bias. The model has been experimentally validated, and this technique can be applied to the MOBY dataset to provide new, more accurate products at these wavelengths. When applied to a 4-month MOBY deployment, the corrected water-leaving radiance L w can increase by 5% (600 nm), 10% (650 nm), and 50% (700 nm). This method will be used to provide additional and more accurate products in the MOBY dataset.

Full access
Fred V. Brock
,
Kenneth C. Crawford
,
Ronald L. Elliott
,
Gerrit W. Cuperus
,
Steven J. Stadler
,
Howard L. Johnson
, and
Michael D. Eilts

Abstract

The Oklahoma mesonet is a joint project of Oklahoma State University and the University of Oklahoma. It is an automated network of 108 stations covering the state of Oklahoma. Each station measures air temperature, humidity, barometric pressure, wind speed and direction, rainfall, solar radiation, and soil temperatures. Each station transmits a data message every 15 min via a radio link to the nearest terminal of the Oklahoma Law Enforcement Telecommunications System that relays it to a central site in Norman, Oklahoma. The data message comprises three 5-min averages of most data (and one 15-min average of soil temperatures). The central site ingests the data, runs some quality assurance tests, archives the data, and disseminates it in real time to a broad community of users, primarily through a computerized bulletin board system. This manuscript provides a technical description of the Oklahoma mesonet including a complete description of the instrumentation. Sensor inaccuracy, resolution, height with respect to ground level, and method of exposure are discussed.

Full access