Search Results

You are looking at 1 - 8 of 8 items for :

  • Author or Editor: Kenneth Mitchell x
  • Journal of Hydrometeorology x
  • Refine by Access: All Content x
Clear All Modify Search
Dingchen Hou
,
Kenneth Mitchell
,
Zoltan Toth
,
Dag Lohmann
, and
Helin Wei

Abstract

Hydrological processes are strongly coupled with atmospheric processes related, for example, to precipitation and temperature, and a coupled atmosphere–land surface system is required for a meaningful hydrological forecast. Since the atmosphere is a chaotic system with limited predictability, ensemble forecasts offer a practical tool to predict the future state of the coupled system in a probabilistic fashion, potentially leading to a more complete and informative hydrologic prediction. As ensemble forecasts with coupled meteorological–hydrological models are operationally running at major numerical weather prediction centers, it is currently possible to produce a gridded streamflow prognosis in the form of a probabilistic forecast based on ensembles. Evaluation and improvement of such products require a comprehensive assessment of both components of the coupled system.

In this article, the atmospheric component of a coupled ensemble forecasting system is evaluated in terms of its ability to provide reasonable forcing to the hydrological component and the effect of the uncertainty represented in the atmospheric ensemble system on the predictability of streamflow as a hydrological variable. The Global Ensemble Forecast System (GEFS) of NCEP is evaluated following a “perfect hydrology” approach, in which its hydrological component, including the Noah land surface model and attached river routing model, is considered free of errors and the initial conditions in the hydrological variables are assumed accurate. The evaluation is performed over the continental United States (CONUS) domain for various sizes of river basins. The results from the experiment suggest that the coupled system is capable of generating useful gridded streamflow forecast when the land surface model and the river routing model can successfully simulate the hydrological processes, and the ensemble strategy significantly improves the forecast. The expected forecast skill increases with increasing size of the river basin. With the current GEFS system, positive skill in short-range (one to three days) predictions can be expected for all significant river basins; for the major rivers with mean streamflow more than 500 m3 s−1, significant skill can be expected from extended-range (the second week) predictions. Possible causes for the loss of skills, including the existence of systematic error and insufficient ensemble spread, are discussed and possible approaches for the improvement of the atmospheric ensemble forecast system are also proposed.

Full access
Yan Luo
,
Ernesto H. Berbery
, and
Kenneth E. Mitchell

Abstract

The surface hydrology of the United States’ western basins is investigated using the National Centers for Environmental Prediction operational Eta Model forecasts. During recent years the model has been subject to changes and upgrades that positively affected its performance. These effects on the surface hydrologic cycle are discussed by analyzing the period June 1995–May 2003. Prior to the model assessment, three gauge-based precipitation analyses that are potential sources of model validation are appraised. A fairly large disparity between the gridded precipitation analyses is found in the long-term area averages over the Columbia basin (∼23% difference) and over the Colorado basin (∼12% difference). These discrepancies are due to the type of analysis scheme employed and whether an orographic correction was applied.

The basin-averaged Eta Model precipitation forecasts correlate well with the observations at monthly time scales and, after 1999, show a small bias. Over the Columbia basin, the model precipitation bias is typically positive. This bias is significantly smaller with respect to orographically corrected precipitation analyses, indicating that the model’s large-scale precipitation processes respond reasonably well to orographic effects, though manifesting a higher bias during the cool season. Over the Colorado basin, the model precipitation bias is typically negative, and notably more so with respect to 1) the orographically corrected precipitation analyses and 2) the warm season, indicating shortfalls in the convection scheme over arid high mountains.

The mean fields of the hydrological variables in the Eta Model are in qualitative agreement with those from the Variable Infiltration Capacity (VIC) macroscale hydrologic model at regional-to-large scales. As expected, the largest differences are found near mountains and the western coastline. While the mean fields of precipitation, evaporation, runoff, and normalized soil moisture are in general agreement, important differences arise in their mean annual cycle over the two basins: snowmelt in the Eta Model precedes that of VIC by 2 months, and this phase shift is also reflected in the other variables. In the last 3–4 yr of the study period, notable improvements are evident in the quality of the model’s precipitation forecast and in the reduction of the residual term of the surface water balance, suggesting that at least similar (or better) quality will be found in studies based on NCEP’s recently completed Eta Model–based North American regional reanalysis.

Full access
Jesse Meng
,
Rongqian Yang
,
Helin Wei
,
Michael Ek
,
George Gayno
,
Pingping Xie
, and
Kenneth Mitchell

Abstract

The NCEP Climate Forecast System Reanalysis (CFSR) uses the NASA Land Information System (LIS) to create its land surface analysis: the NCEP Global Land Data Assimilation System (GLDAS). Comparing to the previous two generations of NCEP global reanalyses, this is the first time a coupled land–atmosphere data assimilation system is included in a global reanalysis. Global observed precipitation is used as direct forcing to drive the land surface analysis, rather than the typical reanalysis approach of using precipitation assimilating from a background atmospheric model simulation. Global observed snow cover and snow depth fields are used to constrain the simulated snow variables. This paper describes 1) the design and implementation of GLDAS/LIS in CFSR, 2) the forcing of the observed global precipitation and snow fields, and 3) preliminary results of global and regional soil moisture content and land surface energy and water budgets closure. With special attention made during the design of CFSR GLDAS/LIS, all the source and sink terms in the CFSR land surface energy and water budgets can be assessed and the total budgets are balanced. This is one of many aspects indicating improvements in CFSR from the previous NCEP reanalyses.

Full access
Cheng-Hsuan Lu
,
Masao Kanamitsu
,
John O. Roads
,
Wesley Ebisuzaki
,
Kenneth E. Mitchell
, and
Dag Lohmann

Abstract

This study compares soil moisture analyses from the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) global reanalysis (R-1) and the later NCEP– Department of Energy (DOE) Atmospheric Model Intercomparison Project (AMIP) global reanalysis (R-2). The R-1 soil moisture is strongly controlled by nudging it to a prescribed climatology, whereas the R-2 soil moisture is adjusted according to differences between model-generated and observed precipitation. While mean soil moisture fields from R-1 and R-2 show many geographic similarities, there are some major differences. This study uses in situ observations from the Global Soil Moisture Data Bank to evaluate the two global reanalysis products. In general, R-2 does a better job of simulating interannual variations, the mean seasonal cycle, and the persistence of soil moisture, when compared to observations. However, the R-2 reanalysis does not necessarily represent observed soil moisture characteristics well in all aspects. Sometimes R-1 provides a better soil moisture analysis on monthly time scales, which is likely a consequence of the deficiencies in the R-2 surface water balance.

Full access
Ben Livneh
,
Youlong Xia
,
Kenneth E. Mitchell
,
Michael B. Ek
, and
Dennis P. Lettenmaier

Abstract

A negative snow water equivalent (SWE) bias in the snow model of the Noah land surface scheme used in the NCEP suite of numerical weather and climate prediction models has been noted by several investigators. This bias motivated a series of offline tests of model extensions and improvements intended to reduce or eliminate the bias. These improvements consist of changes to the model’s albedo formulation that include a parameterization for snowpack aging, changes to how pack temperature is computed, and inclusion of a provision for refreeze of liquid water in the pack. Less extensive testing was done on the performance of model extensions with alternate areal depletion parameterizations. Model improvements were evaluated through comparisons of point simulations with National Resources Conservation Service (NRCS) Snowpack Telemetry (SNOTEL) SWE data for deep-mountain snowpacks at selected stations in the western United States, as well as simulations of snow areal extent over the conterminous United States (CONUS) domain, compared with observational data from the NOAA Interactive Multisensor Snow and Ice Mapping System (IMS). The combination of snow-albedo decay and liquid-water refreeze results in substantial improvements in the magnitude and timing of peak SWE, as well as increased snow-covered extent at large scales. Modifications to areal snow depletion thresholds yielded more realistic snow-covered albedos at large scales.

Full access
Yan Luo
,
Ernesto H. Berbery
,
Kenneth E. Mitchell
, and
Alan K. Betts

Abstract

This study examines the recently released National Centers for Environmental Prediction (NCEP) North American Regional Reanalysis (NARR) products over diverse climate regimes to determine the regional relationships between soil moisture and near-surface atmospheric variables. NARR assimilates observed precipitation, as well as near-surface observations of humidity and wind, while seeking a balance of the surface water and energy budgets with a modern land surface model. The results of this study indicate that for most basins (of approximate size of 0.5–1.0 × 106 km2) the NARR surface water budgets have relatively small residuals (about 0.2 mm day−1), and slightly larger residuals (about 0.4 mm day−1) for basins with complex terrain like those in the western United States.

Given that the NARR is an assimilation system (especially one that assimilates observed precipitation), the NARR does not include feedbacks between soil moisture and precipitation. Nonetheless, as a diagnostic tool anchored to observations, the NARR does show that the extent of positive correlation between anomalies of soil moisture and anomalies of precipitation in a given region depends on that region’s dryness. The existence of correlations among all variables is a necessary—but not sufficient—condition for land–atmosphere feedbacks to exist, as a region with no correlations would not be expected to have feedbacks. Likewise, a high degree of persistence of soil moisture anomalies in a given basin does not by itself guarantee a positive correlation between anomalies of soil moisture and precipitation.

Land surface–atmosphere relationships at monthly time scales are identified by examining the associations between soil moisture and surface and boundary layer variables. Low soil moisture is consistently associated with increased net shortwave radiation and increased outgoing longwave radiation through the effects of less cloud cover and lower atmospheric humidity. No systematic association is revealed between soil moisture and total net surface radiation, as this relation varies substantially between different basins. Low soil moisture is positively correlated with increased sensible heat and lower latent heat (reflected in a smaller evaporative fraction), decreased low-cloud cover, and higher lifting condensation level. The relation between soil moisture anomalies and precipitation anomalies is found to be quite variable between the basins, depending on whether availability of surface water exceeds the available energy for evaporation, or vice versa. Wetter basins, like the Columbia and Ohio, display weak or no correlations between soil moisture anomalies and precipitation anomalies. On the other hand, transitional regions between wet and dry regions, like the central Great Plains, manifest a positive correlation between soil moisture anomalies and precipitation anomalies. These results further the understanding of previous predictability studies (in coupled land–atmosphere prediction models), which indicates that in order for precipitation anomalies to emerge in response to soil moisture anomalies in a given region, it is necessary that the region’s seasonal climate be neither too dry nor too wet.

Full access
Youlong Xia
,
David Mocko
,
Maoyi Huang
,
Bailing Li
,
Matthew Rodell
,
Kenneth E. Mitchell
,
Xitian Cai
, and
Michael B. Ek

Abstract

To prepare for the next-generation North American Land Data Assimilation System (NLDAS), three advanced land surface models [LSMs; i.e., Community Land Model, version 4.0 (CLM4.0); Noah LSM with multiphysics options (Noah-MP); and Catchment LSM-Fortuna 2.5 (CLSM-F2.5)] were run for the 1979–2014 period within the NLDAS-based framework. Unlike the LSMs currently executing in the operational NLDAS, these three advanced LSMs each include a groundwater component. In this study, the model simulations of monthly terrestrial water storage anomaly (TWSA) and its individual water storage components are evaluated against satellite-based and in situ observations, as well as against reference reanalysis products, at basinwide and statewide scales. The quality of these TWSA simulations will contribute to determining the suitability of these models for the next phase of the NLDAS. Overall, it is found that all three models are able to reasonably capture the monthly and interannual variability and magnitudes of TWSA. However, the relative contributions of the individual water storage components to TWSA are very dependent on the model and basin. A major contributor to the TWSA is the anomaly of total column soil moisture content for CLM4.0 and Noah-MP, while the groundwater storage anomaly is the major contributor for CLSM-F2.5. Other water storage components such as the anomaly of snow water equivalent also play a role in all three models. For each individual water storage component, the models are able to capture broad features such as monthly and interannual variability. However, there are large intermodel differences and quantitative uncertainties, which are motivating follow-on investigations in the NLDAS Science Testbed developed by the NASA and NCEP NLDAS teams.

Full access
Lifeng Luo
,
Alan Robock
,
Konstantin Y. Vinnikov
,
C. Adam Schlosser
,
Andrew G. Slater
,
Aaron Boone
,
Pierre Etchevers
,
Florence Habets
,
Joel Noilhan
,
Harald Braden
,
Peter Cox
,
Patricia de Rosnay
,
Robert E. Dickinson
,
Yongjiu Dai
,
Qing-Cun Zeng
,
Qingyun Duan
,
John Schaake
,
Ann Henderson-Sellers
,
Nicola Gedney
,
Yevgeniy M. Gusev
,
Olga N. Nasonova
,
Jinwon Kim
,
Eva Kowalczyk
,
Kenneth Mitchell
,
Andrew J. Pitman
,
Andrey B. Shmakin
,
Tatiana G. Smirnova
,
Peter Wetzel
,
Yongkang Xue
, and
Zong-Liang Yang

Abstract

The Project for Intercomparison of Land-Surface Parameterization Schemes phase 2(d) experiment at Valdai, Russia, offers a unique opportunity to evaluate land surface schemes, especially snow and frozen soil parameterizations. Here, the ability of the 21 schemes that participated in the experiment to correctly simulate the thermal and hydrological properties of the soil on several different timescales was examined. Using observed vertical profiles of soil temperature and soil moisture, the impact of frozen soil schemes in the land surface models on the soil temperature and soil moisture simulations was evaluated.

It was found that when soil-water freezing is explicitly included in a model, it improves the simulation of soil temperature and its variability at seasonal and interannual scales. Although change of thermal conductivity of the soil also affects soil temperature simulation, this effect is rather weak. The impact of frozen soil on soil moisture is inconclusive in this experiment due to the particular climate at Valdai, where the top 1 m of soil is very close to saturation during winter and the range for soil moisture changes at the time of snowmelt is very limited. The results also imply that inclusion of explicit snow processes in the models would contribute to substantially improved simulations. More sophisticated snow models based on snow physics tend to produce better snow simulations, especially of snow ablation. Hysteresis of snow-cover fraction as a function of snow depth is observed at the catchment but not in any of the models.

Full access