Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Kenneth S. Gage x
  • Journal of the Atmospheric Sciences x
  • Refine by Access: All Content x
Clear All Modify Search
George C. Reid
and
Kenneth S. Gage

Abstract

The existence of an annual variation in height and temperature of the tropopause over tropical regions has long been recognized, but has not been fully explained. In this paper it is proposed that the variation is a fairly direct response to the annual variation in average tropical surface insolation. The variation in insolation causes a corresponding annual cycle in average tropical sea surface temperature with a total range of order 1 K. The consequent variation in absolute humidity in turn produces an annual variation in upper tropospheric potential temperatures, and hence in the height and temperature of the tropopause.

The physical link between the surface and the tropopause is provided by convection in the cores of the giant cumulonimbus clouds (hot towers) of the tropical oceanic regions, in which air parcels can achieve the maximum possible heating by release of latent heat. The process is modeled quantitatively in a simplified way, and excellent agreement is found between the predicted and observed phase and amplitude of the annual variation in tropopause potential temperature.

Since the regular seasonal variation in insolation is relatively small in the tropics, the annual variation in sun-earth distance is an important factor in the variation of surface insolation. The annual cycle in the properties of the tropical tropopause thus provides the first identifiable effect of the earth's orbital eccentricity on climate parameters.

Full access
Kenneth S. Gage
,
Christopher R. Williams
,
Warner L. Ecklund
, and
Paul E. Johnston

Abstract

A 2835-MHz (10.6-cm wavelength) profiler and a 920-MHz (32.6-cm wavelength) profiler were collocated by the NOAA Aeronomy Laboratory at Garden Point, Australia, in the Tiwi Islands during the Maritime Continent Thunderstorm Experiment (MCTEX) field campaign in November and December 1995. The two profilers were directed vertically and observed vertical velocities in the clear atmosphere and hydrometeor fall velocities in deep precipitating cloud systems. In the absence of Rayleigh scatterers, the profilers obtain backscattering from the refractive index irregularities created from atmospheric turbulence acting upon refractive index gradients. This kind of scattering is commonly referred to as Bragg scattering and is only weakly dependent on the radar wavelength provided the radar half-wavelength lies within the inertial subrange of homogeneous, isotropic turbulence. In the presence of hydrometeors the profilers observe Rayleigh backscattering from hydrometeors much as weather radars do and this backscatter is very dependent upon radar wavelength, strongly favoring the shorter wavelength profiler resulting in a 20-dB enhancement of the ability of the 2835-MHz profiler to observe hydrometeors. This paper presents observations of equivalent reflectivity, Doppler velocity, and spectral width made by the collocated profilers during MCTEX. Differential reflectivity is used to diagnose the type of echo observed by the profilers in the spectral moment data. When precipitation or other particulate backscatter is dominant, the equivalent reflectivities are essentially the same for both profilers. When Bragg scattering is the dominant process, equivalent reflectivity observed by the 1-GHz profiler exceeds the equivalent reflectivity observed by the 3-GHz profiler by approximately 18 dBZe. However, when the 3-GHz profiler half-wavelength is smaller than the inner scale of turbulence, the equivalent reflectivity difference exceeds 18 dBZe, and when both Rayleigh scattering and Bragg scattering are observed simultaneously, the equivalent reflectivity difference is less than 18 dBZe. The results obtained confirm the capability of two collocated profilers to unambiguously identify the type of echo being observed and hence enable the segregation of “clear air” and precipitation echoes for studies of atmospheric dynamics and precipitating cloud systems.

Full access
Robert Schafer
,
Peter T. May
,
Thomas D. Keenan
,
Kendal McGuffie
,
Warner L. Ecklund
,
Paul E. Johnston
, and
Kenneth S. Gage

Abstract

Data collected during the Maritime Continent Thunderstorm Experiment (MCTEX) (10 November–10 December 1995) have been used to analyze boundary layer development and circulations over two almost flat, tropical islands. The two adjacent islands have a combined length of about 170 km from east to west and 70 km from north to south. Intense thunderstorms formed over these islands every day of the field campaign. The boundary layer depth, temperature, and circulation over the island have been measured over the full diurnal cycle using a multiple radar analysis combined with surface and radiosonde measurements. On average, the island boundary layer depth reaches 1.5 km by early to midafternoon coinciding with the development of the deep convection. Thus, the island boundary layer is significantly deeper than the typical tropical oceanic boundary layer. In the midafternoon, thunderstorm outflows and their associated cold pool stabilize the lower boundary layer, suppressing late convection. This is followed by a period of partial boundary layer recovery for 1–2 h. After sunset, cooling leads to a deepening ground-based inversion below a residual mixed layer. Near the island center, the residual mixed layer of island-modified air is replaced by air of oceanic origin by about 2300 LST (local standard time) that then persists until sunrise the next day. The advection of boundary layer air of oceanic origin over the islands every evening resets the boundary layer development cycle. It is shown that much of the variation in the diurnal temperature profile is a result of thunderstorm activity, radiative processes, and the advection of island and oceanic boundary layer air.

Full access