Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Kevin R. Haghi x
  • Plains Elevated Convection At Night (PECAN) x
  • Refine by Access: All Content x
Clear All Modify Search
Aaron Johnson, Xuguang Wang, Kevin R. Haghi, and David B. Parsons

Abstract

This paper presents a case study from an intensive observing period (IOP) during the Plains Elevated Convection at Night (PECAN) field experiment that was focused on a bore generated by nocturnal convection. Observations from PECAN IOP 25 on 11 July 2015 are used to evaluate the performance of high-resolution Weather Research and Forecasting Model forecasts, initialized using the Gridpoint Statistical Interpolation (GSI)-based ensemble Kalman filter. The focus is on understanding model errors and sensitivities in order to guide forecast improvements for bores associated with nocturnal convection. Model simulations of the bore amplitude are compared against eight retrieved vertical cross sections through the bore during the IOP. Sensitivities of forecasts to microphysics and planetary boundary layer (PBL) parameterizations are also investigated. Forecasts initialized before the bore pulls away from the convection show a more realistic bore than forecasts initialized later from analyses of the bore itself, in part due to the smoothing of the existing bore in the ensemble mean. Experiments show that the different microphysics schemes impact the quality of the simulations with unrealistically weak cold pools and bores with the Thompson and Morrison microphysics schemes, cold pools too strong with the WDM6 and more accurate with the WSM6 schemes. Most PBL schemes produced a realistic bore response to the cold pool, with the exception of the Mellor–Yamada–Nakanishi–Niino (MYNN) scheme, which creates too much turbulent mixing atop the bore. A new method of objectively estimating the depth of the near-surface stable layer corresponding to a simple two-layer model is also introduced, and the impacts of turbulent mixing on this estimate are discussed.

Full access
David B. Parsons, Kevin R. Haghi, Kelton T. Halbert, Blake Elmer, and Junhong Wang

Abstract

This investigation explores the relationship among bores, gravity waves, and convection within the nocturnal environment through the utilization of measurements taken during the International H2O Project (IHOP_2002) over the Southern Great Plains. The most favorable conditions for deep convection were found to occur within the boundary layer during the late afternoon and early evening hours in association with the diurnal cycle of solar insolation. At night, the layers most favorable for deep convection occur at and above the height of the nocturnal southerly low-level jet in association with distinct maxima in both the southerly and westerly components of the wind. Observations taken during the passage of 13 nocturnal wave disturbances over a comprehensive profiling site show the average maximum and net upward displacements with these waves were estimated to be ~900 and ~660 m, respectively. The lifting was not limited to the stable boundary layer, but reached into the conditionally unstable layers aloft. Since the net upward displacements persisted for many hours as the disturbances propagated away from the convection, areas well in excess of 10 000 km2 are likely impacted by this ascent. This lifting can directly maintain existing convection and aid in the initiation of new convection by reducing the convective inhibition in the vicinity of the active convection. In agreement with past studies, strong ascent in the lowest ~1.5 km was generally consistent with the passage of a bore. However, separate wave responses also occurred well above the bores, and low-frequency gravity waves may explain such disturbances.

Full access

Bore-ing into Nocturnal Convection

Kevin R. Haghi, Bart Geerts, Hristo G. Chipilski, Aaron Johnson, Samuel Degelia, David Imy, David B. Parsons, Rebecca D. Adams-Selin, David D. Turner, and Xuguang Wang

Abstract

There has been a recent wave of attention given to atmospheric bores in order to understand how they evolve and initiate and maintain convection during the night. This surge is attributable to data collected during the 2015 Plains Elevated Convection at Night (PECAN) field campaign. A salient aspect of the PECAN project is its focus on using multiple observational platforms to better understand convective outflow boundaries that intrude into the stable boundary layer and induce the development of atmospheric bores. The intent of this article is threefold: 1) to educate the reader on current and future foci of bore research, 2) to present how PECAN observations will facilitate aforementioned research, and 3) to stimulate multidisciplinary collaborative efforts across other closely related fields in an effort to push the limitations of prediction of nocturnal convection.

Full access
Bart Geerts, David Parsons, Conrad L. Ziegler, Tammy M. Weckwerth, Michael I. Biggerstaff, Richard D. Clark, Michael C. Coniglio, Belay B. Demoz, Richard A. Ferrare, William A. Gallus Jr., Kevin Haghi, John M. Hanesiak, Petra M. Klein, Kevin R. Knupp, Karen Kosiba, Greg M. McFarquhar, James A. Moore, Amin R. Nehrir, Matthew D. Parker, James O. Pinto, Robert M. Rauber, Russ S. Schumacher, David D. Turner, Qing Wang, Xuguang Wang, Zhien Wang, and Joshua Wurman

Abstract

The central Great Plains region in North America has a nocturnal maximum in warm-season precipitation. Much of this precipitation comes from organized mesoscale convective systems (MCSs). This nocturnal maximum is counterintuitive in the sense that convective activity over the Great Plains is out of phase with the local generation of CAPE by solar heating of the surface. The lower troposphere in this nocturnal environment is typically characterized by a low-level jet (LLJ) just above a stable boundary layer (SBL), and convective available potential energy (CAPE) values that peak above the SBL, resulting in convection that may be elevated, with source air decoupled from the surface. Nocturnal MCS-induced cold pools often trigger undular bores and solitary waves within the SBL. A full understanding of the nocturnal precipitation maximum remains elusive, although it appears that bore-induced lifting and the LLJ may be instrumental to convection initiation and the maintenance of MCSs at night.

To gain insight into nocturnal MCSs, their essential ingredients, and paths toward improving the relatively poor predictive skill of nocturnal convection in weather and climate models, a large, multiagency field campaign called Plains Elevated Convection At Night (PECAN) was conducted in 2015. PECAN employed three research aircraft, an unprecedented coordinated array of nine mobile scanning radars, a fixed S-band radar, a unique mesoscale network of lower-tropospheric profiling systems called the PECAN Integrated Sounding Array (PISA), and numerous mobile-mesonet surface weather stations. The rich PECAN dataset is expected to improve our understanding and prediction of continental nocturnal warm-season precipitation. This article provides a summary of the PECAN field experiment and preliminary findings.

Full access