Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Kiel L. Ortega x
  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: All Content x
Clear All Modify Search
Kiel L. Ortega, John M. Krause, and Alexander V. Ryzhkov

Abstract

This study is the third part of a paper series investigating the polarimetric radar properties of melting hail and application of those properties for operational polarimetric hail detection and determination of its size. The results of theoretical simulations in Part I were used to develop a hail size discrimination algorithm (HSDA) described in Part II. The HSDA uses radar reflectivity Z, differential reflectivity ZDR, and cross-correlation coefficient ρhv along with melting-level height within a fuzzy-logic scheme to distinguish among three hail size classes: small hail (with diameter D < 2.5 cm), large hail (2.5 < D < 5.0 cm), and giant hail (D > 5.0 cm). The HSDA validation is performed using radar data collected by numerous WSR-88D sites and more than 3000 surface hail reports obtained from the Severe Hazards Analysis and Verification Experiment (SHAVE). The original HSDA version was modified in the process of validation, and the modified algorithm demonstrates probability of detection of 0.594, false-alarm ratio of 0.136, and resulting critical success index (CSI) equal to 0.543. The HSDA outperformed the current operational single-polarization hail detection algorithm, which only provides a single hail size estimate per storm and is characterized by CSI equal to 0.324. It is shown that HSDA is particularly sensitive to the quality of ZDR measurements, which might be affected by possible radar miscalibration and anomalously high differential attenuation.

Full access