Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Kiel L. Ortega x
  • Weather and Forecasting x
  • Refine by Access: All Content x
Clear All Modify Search
John L. Cintineo, Travis M. Smith, Valliappa Lakshmanan, Harold E. Brooks, and Kiel L. Ortega

Abstract

The threat of damaging hail from severe thunderstorms affects many communities and industries on a yearly basis, with annual economic losses in excess of $1 billion (U.S. dollars). Past hail climatology has typically relied on the National Oceanic and Atmospheric Administration/National Climatic Data Center’s (NOAA/NCDC) Storm Data publication, which has numerous reporting biases and nonmeteorological artifacts. This research seeks to quantify the spatial and temporal characteristics of contiguous United States (CONUS) hail fall, derived from multiradar multisensor (MRMS) algorithms for several years during the Next-Generation Weather Radar (NEXRAD) era, leveraging the Multiyear Reanalysis of Remotely Sensed Storms (MYRORSS) dataset at NOAA’s National Severe Storms Laboratory (NSSL). The primary MRMS product used in this study is the maximum expected size of hail (MESH). The preliminary climatology includes 42 months of quality controlled and reprocessed MESH grids, which spans the warm seasons for four years (2007–10), covering 98% of all Storm Data hail reports during that time. The dataset has 0.01° latitude × 0.01° longitude × 31 vertical levels spatial resolution, and 5-min temporal resolution. Radar-based and reports-based methods of hail climatology are compared. MRMS MESH demonstrates superior coverage and resolution over Storm Data hail reports, and is largely unbiased. The results reveal a broad maximum of annual hail fall in the Great Plains and a diminished secondary maximum in the Southeast United States. Potential explanations for the differences in the two methods of hail climatology are also discussed.

Full access
Brandon R. Smith, Thea Sandmæl, Matthew C. Mahalik, Kimberly L. Elmore, Darrel M. Kingfield, Kiel L. Ortega, and Travis M. Smith
Restricted access
Matthew C. Mahalik, Brandon R. Smith, Kimberly L. Elmore, Darrel M. Kingfield, Kiel L. Ortega, and Travis M. Smith

Abstract

The local, linear, least squares derivative (LLSD) approach to radar analysis is a method of quantifying gradients in radar data by fitting a least squares plane to a neighborhood of range bins and finding its slope. When applied to radial velocity fields, for example, LLSD yields part of the azimuthal (rotational) and radial (divergent) components of horizontal shear, which, under certain geometric assumptions, estimate one-half of the two-dimensional vertical vorticity and horizontal divergence equations, respectively. Recent advances in computational capacity as well as increased usage of LLSD products by the meteorological community have motivated an overhaul of the LLSD methodology’s application to radar data. This paper documents the mathematical foundation of the updated LLSD approach, including a complete derivation of its equation set, discussion of its limitations, and considerations for other types of implementation. In addition, updated azimuthal shear calculations are validated against theoretical vorticity using simulated circulations. Applications to nontraditional radar data and new applications to nonvelocity radar data including reflectivity at horizontal polarization, spectrum width, and polarimetric moments are also explored. These LLSD gradient calculations may be leveraged to identify and interrogate a wide variety of severe weather phenomena, either directly by operational forecasters or indirectly as part of future automated algorithms.

Full access
Travis M. Smith, Jidong Gao, Kristin M. Calhoun, David J. Stensrud, Kevin L. Manross, Kiel L. Ortega, Chenghao Fu, Darrel M. Kingfield, Kimberly L. Elmore, Valliappa Lakshmanan, and Christopher Riedel

Abstract

Forecasters and research meteorologists tested a real-time three-dimensional variational data assimilation (3DVAR) system in the Hazardous Weather Testbed during the springs of 2010–12 to determine its capabilities to assist in the warning process for severe storms. This storm-scale system updates a dynamically consistent three-dimensional wind field every 5 min, with horizontal and average vertical grid spacings of 1 km and 400 m, respectively. The system analyzed the life cycles of 218 supercell thunderstorms on 27 event days during these experiments, producing multiple products such as vertical velocity, vertical vorticity, and updraft helicity. These data are compared to multiradar–multisensor data from the Warning Decision Support System–Integrated Information to document the performance characteristics of the system, such as how vertical vorticity values compare to azimuthal shear fields calculated directly from Doppler radial velocity. Data are stratified by range from the nearest radar, as well as by the number of radars entering into the analysis of a particular storm. The 3DVAR system shows physically realistic trends of updraft speed and vertical vorticity for a majority of cases. Improvements are needed to better estimate the near-surface winds when no radar is nearby and to improve the timeliness of the input data. However, the 3DVAR wind field information provides an integrated look at storm structure that may be of more use to forecasters than traditional radar-based proxies used to infer severe weather potential.

Full access