Search Results
You are looking at 1 - 1 of 1 items for :
- Author or Editor: Kirstin Kober x
- Monthly Weather Review x
- Refine by Access: All Content x
Abstract
Stochastic parameterizations allow the representation of the small-scale variability of parameterized physical processes. This study investigates whether additional variability introduced by a stochastic convection parameterization leads to improvements in the precipitation forecasts. Forecasts are calculated with two different ensembles: one considering large-scale and convective variability with the stochastic Plant–Craig convection parameterization and one considering only large-scale variability with the standard Tiedtke convection parameterization. The forecast quality of both ensembles is evaluated in comparison with radar observations for two case studies with weak and strong synoptic forcing of convection and measured with neighborhood and probabilistic verification methods. The skill of the ensemble based on the Plant–Craig convection parameterization relative to the ensemble with the Tiedtke parameterization strongly depends on the synoptic situation in which convection occurs. In the weak forcing case, where the convective precipitation is highly intermittent, the ensemble based on the stochastic parameterization is superior, but the scheme produces too much small-scale variability in the strong forcing case. In the future, the degree of stochastic variability could be tuned, and these results show that parameters should be chosen in a regime-dependent manner.
Abstract
Stochastic parameterizations allow the representation of the small-scale variability of parameterized physical processes. This study investigates whether additional variability introduced by a stochastic convection parameterization leads to improvements in the precipitation forecasts. Forecasts are calculated with two different ensembles: one considering large-scale and convective variability with the stochastic Plant–Craig convection parameterization and one considering only large-scale variability with the standard Tiedtke convection parameterization. The forecast quality of both ensembles is evaluated in comparison with radar observations for two case studies with weak and strong synoptic forcing of convection and measured with neighborhood and probabilistic verification methods. The skill of the ensemble based on the Plant–Craig convection parameterization relative to the ensemble with the Tiedtke parameterization strongly depends on the synoptic situation in which convection occurs. In the weak forcing case, where the convective precipitation is highly intermittent, the ensemble based on the stochastic parameterization is superior, but the scheme produces too much small-scale variability in the strong forcing case. In the future, the degree of stochastic variability could be tuned, and these results show that parameters should be chosen in a regime-dependent manner.