Search Results

You are looking at 1 - 6 of 6 items for :

  • Author or Editor: Kristopher B. Karnauskas x
  • Journal of Physical Oceanography x
  • Refine by Access: All Content x
Clear All Modify Search
Kristopher B. Karnauskas
,
Raghu Murtugudde
, and
Antonio J. Busalacchi

Abstract

Although sustained observations yield a description of the mean equatorial current system from the western Pacific to the eastern terminus of the Tropical Atmosphere Ocean (TAO) array, a comprehensive observational dataset suitable for describing the structure and pathways of the Equatorial Undercurrent (EUC) east of 95°W does not exist and therefore climate models are unconstrained in a region that plays a critical role in ocean–atmosphere coupling. Furthermore, ocean models suggest that the interaction between the EUC and the Galápagos Islands (∼92°W) has a striking effect on the basic state and coupled variability of the tropical Pacific. To this end, the authors interpret historical measurements beginning with those made in conjunction with the discovery of the Pacific EUC in the 1950s, analyze velocity measurements from an equatorial TAO mooring at 85°W, and analyze a new dataset from archived shipboard ADCP measurements. Together, the observations yield a possible composite description of the EUC structure and pathways in the eastern equatorial Pacific that may be useful for model validation and guiding future observation.

Full access
Kristopher B. Karnauskas
,
Raghu Murtugudde
, and
Antonio J. Busalacchi

Abstract

A reduced-gravity ocean general circulation model of the tropical Pacific Ocean is used to determine potential improvements to the simulated equatorial Pacific cold tongue region through choices in horizontal resolution and coastline geometry—in particular, for the Galápagos Islands. Four simulations are performed, with identical climatological forcing. Results are compared between model grids with and without the Galápagos Islands, with coarse and fine resolutions. It is found that properly including the Galápagos Islands results in the obstruction of the Equatorial Undercurrent (EUC), which leads to improvements in the simulated spatial structure of the cold tongue, including a basinwide warming of up to 2°C in the east-central Pacific. The obstruction of the EUC is directly related to the improvements east of the Galápagos Islands, and for the basinwide reduction of the tropical cold bias through an equatorial dynamical adjustment. The pattern of SST warming resulting from the inclusion of the Galápagos Islands is similar to that of the known cold biases in ocean models and the current National Oceanic and Atmospheric Administration Climate Forecast System. It is thought that such an improvement would have a considerable impact on the ability of coupled ocean–atmosphere and ocean–ecosystem models to produce realistic clouds, precipitation, surface ocean bioproductivity, and carbon cycling in the tropical Pacific Ocean.

Full access
Kristopher B. Karnauskas
,
Raghu Murtugudde
, and
Antonio J. Busalacchi

Abstract

An ocean general circulation model (OGCM) of the tropical Pacific Ocean is used to examine the effects of the Galápagos Islands on the El Niño–Southern Oscillation (ENSO). First, a series of experiments is conducted using the OGCM in a forced context, whereby an idealized El Niño event may be examined in cases with and without the Galápagos Islands. In this setup, the sensitivity of the sea surface temperature (SST) anomaly response to the presence of the Galápagos Islands is examined. Second, with the OGCM coupled to the atmosphere via zonal wind stress, experiments are conducted with and without the Galápagos Islands to determine how the Galápagos Islands influence the time scale of ENSO.

In the forced setup, the Galápagos Islands lead to a damped SST anomaly given an identical zonal wind stress perturbation. Mixed layer heat budget calculations implicate the entrainment mixing term, which confirms that the difference is due to the Galápagos Islands changing the background mean state, that is, the equatorial thermocline as diagnosed in a previous paper. In the hybrid coupled experiments, there is a clear shift in the power spectrum of SST anomalies in the eastern equatorial Pacific. Specifically, the Galápagos Islands lead to a shift in the ENSO time scale from a biennial to a quasi-quadrennial period. Mechanisms for the shift in ENSO time scale due to the Galápagos Islands are discussed in the context of well-known paradigms for the oscillatory nature of ENSO.

Full access
Julie Jakoboski
,
Robert E. Todd
,
W. Brechner Owens
,
Kristopher B. Karnauskas
, and
Daniel L. Rudnick

Abstract

The Equatorial Undercurrent (EUC) encounters the Galápagos Archipelago on the equator as it flows eastward across the Pacific. The impact of the Galápagos Archipelago on the EUC in the eastern equatorial Pacific remains largely unknown. In this study, the path of the EUC as it reaches the Galápagos Archipelago is measured directly using high-resolution observations obtained by autonomous underwater gliders. Gliders were deployed along three lines that define a closed region with the Galápagos Archipelago as the eastern boundary and 93°W from 2°S to 2°N as the western boundary. Twelve transects were simultaneously occupied along the three lines during 52 days in April–May 2016. Analysis of individual glider transects and average sections along each line show that the EUC splits around the Galápagos Archipelago. Velocity normal to the transects is used to estimate net horizontal volume transport into the volume. Downward integration of the net horizontal transport profile provides an estimate of the time- and areal-averaged vertical velocity profile over the 52-day time period. Local maxima in vertical velocity occur at depths of 25 and 280 m with magnitudes of (1.7 ± 0.6) × 10−5 m s−1 and (8.0 ± 1.6) × 10−5 m s−1, respectively. Volume transport as a function of salinity indicates that water crossing 93°W south (north) of 0.4°S tends to flow around the south (north) side of the Galápagos Archipelago. Comparisons are made between previous observational and modeling studies with differences attributed to effects of the strong 2015/16 El Niño event, the annual cycle of local winds, and varying longitudes between studies of the equatorial Pacific.

Free access
Julie Jakoboski
,
Robert E. Todd
,
W. Brechner Owens
,
Kristopher B. Karnauskas
, and
Daniel L. Rudnick

Abstract

The Galápagos Archipelago lies on the equator in the path of the eastward flowing Pacific Equatorial Undercurrent (EUC). When the EUC reaches the archipelago, it upwells and bifurcates into a north and south branch around the archipelago at a latitude determined by topography. Since the Coriolis parameter (f) equals zero at the equator, strong velocity gradients associated with the EUC can result in Ertel potential vorticity (Q) having sign opposite that of planetary vorticity near the equator. Observations collected by underwater gliders deployed just west of the Galápagos Archipelago during 2013–16 are used to estimate Q and to diagnose associated instabilities that may impact the Galápagos Cold Pool. Estimates of Q are qualitatively conserved along streamlines, consistent with the 2.5-layer, inertial model of the EUC by Pedlosky. The Q with sign opposite of f is advected south of the Galápagos Archipelago when the EUC core is located south of the bifurcation latitude. The horizontal gradient of Q suggests that the region between 2°S and 2°N above 100 m is barotropically unstable, while limited regions are baroclinically unstable. Conditions conducive to symmetric instability are observed between the EUC core and the equator and within the southern branch of the undercurrent. Using 2-month and 3-yr averages, e-folding time scales are 2–11 days, suggesting that symmetric instability can persist on those time scales.

Significance Statement

The Pacific Ocean contains fast-moving currents near the equator and below the surface that result in instabilities and mixing. The Galápagos Archipelago lies directly in the path of the eastward-flowing Pacific Equatorial Undercurrent. There are few observations of what happens to the current when it reaches the Galápagos Archipelago, so theories and models of the instabilities and mixing resulting from these strong currents have not been well verified. The Repeat Observations by Gliders in the Equatorial Region (ROGER) project deployed autonomous underwater gliders to observe the current system in this region. The results show that a range of instabilities may be responsible for the cold sea surface temperature of the Galápagos Cold Pool and the generation of tropical instability waves.

Free access
Daniel L. Rudnick
,
W. Brechner Owens
,
T. M. Shaun Johnston
,
Kristopher B. Karnauskas
,
Julie Jakoboski
, and
Robert E. Todd

Abstract

The strong El Niño of 2014–16 was observed west of the Galápagos Islands through sustained deployment of underwater gliders. Three years of observations began in October 2013 and ended in October 2016, with observations at longitudes 93° and 95°W between latitudes 2°N and 2°S. In total, there were over 3000 glider-days of data, covering over 50 000 km with over 12 000 profiles. Coverage was superior closer to the Galápagos on 93°W, where gliders were equipped with sensors to measure velocity as well as temperature, salinity, and pressure. The repeated glider transects are analyzed to produce highly resolved mean sections and maps of observed variables as functions of time, latitude, and depth. The mean sections reveal the structure of the Equatorial Undercurrent (EUC), the South Equatorial Current, and the equatorial front. The mean fields are used to calculate potential vorticity Q and Richardson number Ri. Gradients in the mean are strong enough to make the sign of Q opposite to that of planetary vorticity and to have Ri near unity, suggestive of mixing. Temporal variability is dominated by the 2014–16 El Niño, with the arrival of depressed isopycnals documented in 2014 and 2015. Increases in eastward velocity advect anomalously salty water and are uncorrelated with warm temperatures and deep isopycnals. Thus, vertical advection is important to changes in heat, and horizontal advection is relevant to changes in salt. Implications of this work include possibilities for future research, model assessment and improvement, and sustained observations across the equatorial Pacific.

Full access