Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Kyle McDonald x
  • Earth Interactions x
  • Refine by Access: All Content x
Clear All Modify Search
Pedro Sequera, Jorge E. González, Kyle McDonald, Steve LaDochy, and Daniel Comarazamy

Abstract

Understanding the interactions between large-scale atmospheric and oceanic circulation patterns and changes in land cover and land use (LCLU) due to urbanization is a relevant subject in many coastal climates. Recent studies by Lebassi et al. found that the average maximum air temperatures during the summer in two populated California coastal areas decreased at low-elevation areas open to marine air penetration during the period of 1970–2005. This coastal cooling was attributed to an increase in sea-breeze activity.

The aims of this work are to better understand the coastal flow patterns and sea–land thermal gradient by improving the land-cover classification scheme in the region using updated airborne remote sensing data and to assess the suitability of the updated regional atmospheric modeling system for representing maritime flows in this region. This study uses high-resolution airborne data from the NASA Hyperspectral Infrared Imager (HyspIRI) mission preparatory flight campaign over Southern California and surface ground stations to compare observations against model estimations.

Five new urban land classes were created using broadband albedo derived from the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) sensor and then assimilated into the Weather Research and Forecasting (WRF) Model. The updated model captures the diurnal spatial and temporal sea-breeze patterns in the region. Results show notable improvements of simulated daytime surface temperature and coastal winds using the HyspIRI-derived products in the model against the default land classification, reaffirming the importance of accounting for heterogeneity of urban surface properties.

Full access
Kyle C. McDonald, John S. Kimball, Eni Njoku, Reiner Zimmermann, and Maosheng Zhao

Abstract

Evidence is presented from the satellite microwave remote sensing record that the timing of seasonal thawing and subsequent initiation of the growing season in early spring has advanced by approximately 8 days from 1988 to 2001 for the pan-Arctic basin and Alaska. These trends are highly variable across the region, with North America experiencing a larger advance relative to Eurasia and the entire region. Interannual variability in the timing of spring thaw as detected from the remote sensing record corresponded directly to seasonal anomalies in mean atmospheric CO2 concentrations for the region, including the timing of the seasonal draw down of atmospheric CO2 from terrestrial net primary productivity (NPP) in spring, and seasonal maximum and minimum CO2 concentrations. The timing of the seasonal thaw for a given year was also found to be a significant (P < 0.01) predictor of the seasonal amplitude of atmospheric CO2 for the following year. These results imply that the timing of seasonal thawing in spring has a major impact on terrestrial NPP and net carbon exchange at high latitudes. The initiation of the growing season has also been occurring earlier, on average, over the time period addressed in this study and may be a major mechanism driving observed atmospheric CO2 seasonal cycle advances, vegetation greening, and enhanced productivity for the northern high latitudes.

Full access