Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: L. Strow x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Fang Pan, Xianglei Huang, L. Larabbe Strow, and Huan Guo


The Atmospheric Infrared Sounder (AIRS) level-1b radiances have been shown to be well calibrated (~0.3 K or higher) and have little secular drift (~4 mK yr−1) since operation started in September 2002. This paper investigates the linear trends of 10 years (2003–12) of AIRS global-mean radiances in the CO2 v 2 band that are sensitive to emissions from the stratosphere (stratospheric channels). AIRS lower-stratospheric channels have a cooling trend of no more than 0.23 K decade−1 whereas the midstratospheric channels consistently show a statistically significant cooling trend as large as 0.58 K decade−1. The 95% confidence interval for the trend is ~±0.20 K decade−1. Two sets of synthetic AIRS radiances are computed using the principal component–based radiative transfer model (PCRTM), one based on a free-running GFDL Atmospheric Model, version 3 (AM3), over the same period and one based on ERA-Interim. The GFDL AM3 simulations overestimate the cooling trends in the mid- to upper-stratospheric channels but slightly underestimate them in the lower-stratospheric channels. The synthetic radiances based on ERA-Interim, however, have statistically significant positive trends at virtually all stratospheric channels. This confirms the challenge to the GCM modeling and reanalysis community to create a better simulation or assimilation of the stratospheric climate. It is shown that the linear trends in AIRS radiances can be reproduced to a large extent by the spectral radiative kernel technique and the trends from the AIRS L2 temperature retrievals and from the change of CO2. This suggests a closure between AIRS L1 radiances and L2 retrievals and the potential merit of AIRS data in studies of stratosphere changes.

Full access
Fang Pan, Xianglei Huang, Stephen S. Leroy, Pu Lin, L. Larrabee Strow, Yi Ming, and V. Ramaswamy


Global-mean radiances observed by the Atmospheric Infrared Sounder (AIRS) and the Advanced Microwave Sounding Unit A (AMSU-A) are analyzed from 2003 to 2012. The focus of this study is on channels sensitive to emission and absorption in the stratosphere. Optimal fingerprinting is used to obtain estimates of changes of stratospheric temperature in five vertical layers due to external forcing in the presence of natural variability. Natural variability is estimated using synthetic radiances based on the 500-yr GFDL CM3 and 240-yr HadGEM2-CC control runs. The results show a cooling rate of 0.65 ± 0.11 (2σ) K decade−1 in the upper stratosphere above 6 hPa, approximately 0.46 ± 0.24 K decade−1 in two midstratospheric layers between 6 and 30 hPa, and 0.39 ± 0.32 K decade−1 in the lower stratosphere (30–60 hPa). The cooling rate in the lowest part of the stratosphere (60–100 hPa) is −0.014 ± 0.22 K decade−1, which is smallest among all five layers and statistically insignificant. The synergistic use of well-calibrated passive infrared and microwave radiances permits disambiguation of trends of carbon dioxide and stratospheric temperature, increases vertical resolution of detected stratospheric temperature trends, and effectively reduces uncertainties of estimated temperature trends.

Full access