Search Results

You are looking at 1 - 10 of 11 items for :

  • Author or Editor: Lawrence Coy x
  • Journal of the Atmospheric Sciences x
  • Refine by Access: All Content x
Clear All Modify Search
Lawrence Coy
and
Matthew Hitchman

Abstract

Atmospheric Kelvin waves, as revealed by temperatures obtained from the recent Limb Infrared Monitor of the Stratosphere (LIMS) experiment, commonly occur in packets. A simple two-dimensional gravity-wave model is used to study the upward propagation of these packets through different zonal mean wind profiles derived from the LIMS data. The observed prevalence of high frequency waves in the lower mesosphere and low frequency waves in the lower stratosphere can be explained by dispersion of energy associated with the range of frequencies comprising a packet. Dominant wave frequencies at upper and lower levels are more distinctly separated if the packet propagates through a layer of westerly winds. Due to dispersion and shear effects, a packet of short temporal length at low levels will have a considerably extended impact on a layer of westerly winds at higher levels. Observed and modeled westerly accelerations resulting from packet absorption occur in the same layer, and are similar in magnitude and duration. These results support the theory that Kelvin waves are responsible for the westerly phase of the semiannual oscillation.

Full access
Krzysztof Wargan
and
Lawrence Coy

Abstract

The behavior of the tropopause inversion layer (TIL) during the 2009 sudden stratospheric warming (SSW) is analyzed using NASA’s Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), and short-term simulations with the MERRA-2 general circulation model. Consistent with previous studies, it is found that static stability in a shallow layer above the polar tropopause sharply increases following the SSW, leading to a strengthening of the high-latitude TIL. Simultaneously, the height of the thermal tropopause decreases by around 1 km. Similar behavior is also detected during other major SSW events between the years 2004 and 2013. Using an ensemble of general circulation model forecasts initialized from MERRA-2, it is demonstrated that the primary cause of the strengthening of the TIL is an increased convergence of the vertical component of the stratospheric residual circulation in response to an SSW-induced acceleration of the mean downward motion between 75° and 90°N. In addition, ~6% of the strengthening in 2009 is attributed to an enhanced anticyclonic circulation at the tropopause. A preliminary analysis indicates that during other recent SSW events there was a significant increase in the convergence of the vertical residual wind velocity throughout the middle and lower stratosphere. The static stability increase simulated by the model during the 2009 SSW is 60%–80% of that seen in MERRA-2. The underestimate is traced back to a tendency for the forecasts to underestimate the resolved planetary wave forcing on the stratosphere compared to the reanalysis.

Full access
Lawrence Coy
and
David C. Fritts

Abstract

The effect of a vertically propagating, internal gravity wave on the vertical flux of potential temperature (heat) is considered by averaging the local heat flux vector over a potential temperature surface. This approach gives the wave heat flux a simple physical picture which is not readily apparent from the more common Eulerian formulation. This method also allows the eddy diffusion coefficient to be a function of the phase of the wave. Such a phase dependent eddy diffusion has been previously considered from an Eulerian viewpoint as a model of a convectively unstable gravity wave. Here, the Lagrangian method confirms and corrects the Eulerian results. Earlier work is extended by modeling a constant amplitude “breaking” wave, as well as by considering eddy diffusion coefficients that are asymmetric with respect to the wave breaking region. In all cases studied, 1ocalizing the eddy diffusion to the region of wayebreaking decreases the average heat flux.

Full access
Lawrence Coy
,
Stephen Eckermann
, and
Karl Hoppel

Abstract

The major stratospheric sudden warming (SSW) of January 2006 is examined using meteorological fields from Goddard Earth Observing System version 4 (GEOS-4) analyses and forecast fields from the Navy Operational Global Atmospheric Prediction System–Advanced Level Physics, High Altitude (NOGAPS-ALPHA). The study focuses on the upper tropospheric forcing that led to the major SSW and the vertical structure of the subtropic wave breaking near 10 hPa that moved low tropical values of potential vorticity (PV) to the pole. Results show that an eastward-propagating upper tropospheric ridge over the North Atlantic with its associated cold temperature perturbations (as manifested by high 360-K potential temperature surface perturbations) and large positive local values of meridional heat flux directly forced a change in the stratospheric polar vortex, leading to the stratospheric subtropical wave breaking and warming. Results also show that the anticyclonic development, initiated by the subtropical wave breaking and associated with the poleward advection of the low PV values, occurred over a limited altitude range of approximately 6–10 km. The authors also show that the poleward advection of this localized low-PV anomaly was associated with changes in the Eliassen–Palm (EP) flux from equatorward to poleward, suggesting an important role for Rossby wave reflection in the SSW of January 2006. Similar upper tropospheric forcing and subtropical wave breaking were found to occur prior to the major SSW of January 2003.

Full access
Lawrence Coy
,
David C. Fritts
, and
J. Weinstock

Abstract

Vertically propagating, compressible, internal gravity waves are shown to have a vertical Stokes drift which is proportional to the vertical wave energy flux. In regions of the atmosphere dominated by upward propagating waves, such as the summer mesosphere, this Stokes drift will be upward. For the Lagrangian mean parcel motion to be small, a downward mean Eulerian velocity must exist to largely oppose the upward Stokes drift. These. results may explain the downward mean Eulerian velocity observed at Poker Flat, Alaska in the summer mesosphere.

Full access
David C. Fritts
,
Robert C. Blanchard
, and
Lawrence Coy

Abstract

Density fluctuations obtained along seven space shuttle reentry tracks are used in this paper to examine the horizontal structure and the vertical distribution of density variance in the mesosphere and lower thermosphere. The tracks lie primarily over open ocean at middle and low latitudes and represent the only measurements of horizontal atmospheric structure at these heights available to date. The density fluctuations are interpreted in terms of gravity wave motions and reveal significant density (and velocity) variance at horizontal scales ranging from ∼10 to 1000 km. Fluctuation amplitudes are used to infer corresponding velocity perturbations and characteristic vertical scales and frequencies of the wave spectrum. Results suggest that the mean velocity variance is smaller over the Pacific ocean than observed over major land masses and that the variance increases with height in a manner consistent with that expected in the presence of wave saturation processes.

Full access
David C. Fritts
,
Li Yuan
,
Matthew H. Hitchman
,
Lawrence Coy
,
Erhan Kudeki
, and
Ronald F. Woodman

Abstract

The Jicamarca MST radar was used in two campaigns during June and August 1987 to measure wave influences, flow variability, and mean structure in the equatorial stratosphere and mesosphere. This paper presents observations of motions and momentum fluxes in the mesosphere during each campaign. A companion paper by Hitchman et al. addresses the mean structure and fluxes as well as comparisons with other datasets. Results presented here indicate that the equatorial mesosphere is dynamically very active, with considerable gravity-wave and tidal motions and persuasive evidence of inertial instability and wave-filtering processes. Vertical velocities at high frequencies are comparable to those observed at other locations. Hourly mean horizontal motions and momentum fluxes are likewise large and variable, exhibiting enormous vertical shears and strong modulation of the wave spectrum and momentum fluxes at higher frequencies. Daily mean profiles reveal persistent structures with vertical scales of ∼6–10 km, vertical shears of the meridional velocity of ∼0.03 s−1, and large mean momentum fluxes. Also discussed are the implications of these observations for wave forcing and instability in the equatorial middle atmosphere.

Full access
Matthew H. Hitchman
,
Kenneth W. Bywaters
,
David C. Fritts
,
Lawrence Coy
,
Erhan Kudeki
, and
Fahri Surucu

Abstract

Data from the mesosphere-stratosphere-troposphere (MST) radar at Jicamarca, Peru, together with other available data, are used to diagnose the mean structure of winds and gravity-wave momentum fluxes from the surface to 90 km during two ten-day campaigns in June and August of 1987.

In the stratosphere a layer of maximum eastward flow associated with the quasi-biennial oscillation (QBO) was seen to strengthen and descend rapidly from June to August, overlying persistent westward flow. A layer of enhanced signal return, suggestive of a turbulent layer, was observed just above the descending QBO eastward maximum. Notable zonal asymmetries were present during this transition and the local meridional circulation departed from zonal-mean QBO theory. A substantial northeastward momentum flux was found below 25 km, which may be related to topographic gravity waves excited by southeastward flow across the Andes.

In the lower mesosphere a relatively weak “second” mesopause semiannual oscillation is confirmed. Gravity-wave zonal and meridional momentum fluxes usually opposed the flow, yielding body forces of ∼10–100 m s−1 day−1. In both the lower stratosphere and mesosphere, body forces were comparable in magnitude to inferred Coriolis torques.

Full access
Xun Zhu
,
Jeng-Hwa Yee
,
William H. Swartz
,
Elsayed R. Talaat
, and
Lawrence Coy

Abstract

There are three distinct processes by which upward-propagating gravity waves influence the large-scale dynamics and energetics of the middle atmosphere: (i) nonlocalized transport of momentum through wave propagation in three dimensions that remotely redistributes atmospheric momentum in both zonal and meridional directions from wave generation to wave dissipation regions; (ii) localized diffusive transport of momentum, heat, and tracers due to mixing induced by wave breaking; and (iii) localized transport of heat by perturbing wave structures due to dissipation that redistributes the thermal energy within a finite domain. These effects become most significant for breaking waves when momentum drag, eddy diffusion, and wave heating— the “breaking trinity”—are all imposed on the background state. This paper develops a 3D parameterization scheme that self-consistently includes the breaking trinity in large-scale numerical models. The 3D parameterization scheme is developed based on the general relationship between the wave action flux and the subgrid-scale momentum and heat fluxes developed by Zhu in 1987 and a mapping approximation between the wave source spectrum and momentum deposition distribution developed by Alexander and Dunkerton in 1999. For a set of given input wind and temperature profiles at each model grid, the parameterization scheme outputs the vertical profiles of the subgrid-scale force terms together with the eddy diffusion coefficients in the momentum and energy equations for a 3D background flow.

Full access
Laura A. Holt
,
M. Joan Alexander
,
Lawrence Coy
,
Andrea Molod
,
William Putman
, and
Steven Pawson

Abstract

This study investigates tropical waves and their role in driving a quasi-biennial oscillation (QBO)-like signal in stratospheric winds in a global 7-km-horizontal-resolution atmospheric general circulation model. The Nature Run (NR) is a 2-yr global mesoscale simulation of the Goddard Earth Observing System Model, version 5 (GEOS-5). In the tropics, there is evidence that the NR supports a broad range of convectively generated waves. The NR precipitation spectrum resembles the observed spectrum in many aspects, including the preference for westward-propagating waves. However, even with very high horizontal resolution and a healthy population of resolved waves, the zonal force provided by the resolved waves is still too low in the QBO region and parameterized gravity wave drag is the main driver of the NR QBO-like oscillation (NR-QBO). The authors suggest that causes include coarse vertical resolution and excessive dissipation. Nevertheless, the very-high-resolution NR provides an opportunity to analyze the resolved wave forcing of the NR-QBO. In agreement with previous studies, large-scale Kelvin and small-scale waves contribute to the NR-QBO driving in eastward shear zones and small-scale waves dominate the NR-QBO driving in westward shear zones. Waves with zonal wavelength < 1000 km account for up to half of the small-scale (<3300 km) resolved wave forcing in eastward shear zones and up to 70% of the small-scale resolved wave forcing in westward shear zones of the NR-QBO.

Full access