Search Results
Abstract
The major stratospheric sudden warming (SSW) of 6 January 2013 is examined using output from the NASA Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System version 5 (GEOS-5) near-real-time data assimilation system (DAS). GEOS-5 analyses showed that the SSW of January 2013 was a major warming by 1200 UTC 6 January, with a wave-2 vortex-splitting pattern. Upward wave activity flux from the upper troposphere (~23 December 2012) displaced the ~10-hPa polar vortex off the pole in a wave-1 pattern, enabling the poleward advection of subtropical values of Ertel potential vorticity (EPV) into a developing anticyclonic circulation region. While the polar vortex subsequently split (wave-2 pattern) the wave-2 forcing [upward Eliassen–Palm (EP) flux] was smaller than what was found in recent wave-2, SSW events, with most of the forcing located in the Pacific hemisphere. Investigation of a rapidly developing tropospheric weather system over the North Atlantic on 28–29 December 2012 showed strong transient upward wave activity flux from the storm with influences up to 10 hPa; however, the Pacific hemisphere wave forcing remained dominate at this time. Results from the GEOS-5 five-day forecasts showed that the forecasts accurately predicted the major SSW of January 2013. The overall success of the 5-day forecasts provides motivation to produce regular 10-day forecasts with GEOS-5, to better support studies of stratosphere–troposphere interaction.
Abstract
The major stratospheric sudden warming (SSW) of 6 January 2013 is examined using output from the NASA Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System version 5 (GEOS-5) near-real-time data assimilation system (DAS). GEOS-5 analyses showed that the SSW of January 2013 was a major warming by 1200 UTC 6 January, with a wave-2 vortex-splitting pattern. Upward wave activity flux from the upper troposphere (~23 December 2012) displaced the ~10-hPa polar vortex off the pole in a wave-1 pattern, enabling the poleward advection of subtropical values of Ertel potential vorticity (EPV) into a developing anticyclonic circulation region. While the polar vortex subsequently split (wave-2 pattern) the wave-2 forcing [upward Eliassen–Palm (EP) flux] was smaller than what was found in recent wave-2, SSW events, with most of the forcing located in the Pacific hemisphere. Investigation of a rapidly developing tropospheric weather system over the North Atlantic on 28–29 December 2012 showed strong transient upward wave activity flux from the storm with influences up to 10 hPa; however, the Pacific hemisphere wave forcing remained dominate at this time. Results from the GEOS-5 five-day forecasts showed that the forecasts accurately predicted the major SSW of January 2013. The overall success of the 5-day forecasts provides motivation to produce regular 10-day forecasts with GEOS-5, to better support studies of stratosphere–troposphere interaction.
Abstract
A high-altitude version of the Navy Operational Global Atmospheric Prediction System (NOGAPS) spectral forecast model is used to simulate the unusual September 2002 Southern Hemisphere stratospheric major warming. Designated as NOGAPS-Advanced Level Physics and High Altitude (NOGAPS-ALPHA), this model extends from the surface to 0.005 hPa (∼85 km altitude) and includes modifications to multiple components of the operational NOGAPS system, including a new radiative heating scheme, middle-atmosphere gravity wave drag parameterizations, hybrid vertical coordinate, upper-level meteorological initialization, and radiatively active prognostic ozone with parameterized photochemistry. NOGAPS-ALPHA forecasts (hindcasts) out to 6 days capture the main features of the major warming, such as the zonal mean wind reversal, planetary-scale wave amplification, large upward Eliassen–Palm (EP) fluxes, and splitting of the polar vortex in the middle stratosphere. Forecasts beyond 6 days have reduced upward EP flux in the lower stratosphere, reduced amplitude of zonal wavenumbers 2 and 3, and a middle stratospheric vortex that does not split. Three-dimensional EP-flux diagnostics in the troposphere reveal that the longer forecasts underestimate upward-propagating planetary wave energy emanating from a significant blocking pattern over the South Atlantic that played a large role in forcing the major warming. Forecasts of less than 6 days are initialized with the blocking in place, and therefore are not required to predict the blocking onset. For a more thorough skill assessment, NOGAPS-ALPHA forecasts over 3 weeks during September–October 2002 are compared with operational NOGAPS 5-day forecasts made at the time. NOGAPS-ALPHA forecasts initialized with 2002 operational NOGAPS analyses show a modest improvement in skill over the NOGAPS operational forecasts. An additional, larger improvement is obtained when NOGAPS-ALPHA is initialized with reanalyzed 2002 fields produced with the currently operational (as of October 2003) Naval Research Laboratory (NRL) Atmospheric Variational Data Assimilation System (NAVDAS). Thus the combination of higher model top, better physical parameterizations, and better initial conditions all yield improved forecasting skill over the NOGAPS forecasts issued operationally at the time.
Abstract
A high-altitude version of the Navy Operational Global Atmospheric Prediction System (NOGAPS) spectral forecast model is used to simulate the unusual September 2002 Southern Hemisphere stratospheric major warming. Designated as NOGAPS-Advanced Level Physics and High Altitude (NOGAPS-ALPHA), this model extends from the surface to 0.005 hPa (∼85 km altitude) and includes modifications to multiple components of the operational NOGAPS system, including a new radiative heating scheme, middle-atmosphere gravity wave drag parameterizations, hybrid vertical coordinate, upper-level meteorological initialization, and radiatively active prognostic ozone with parameterized photochemistry. NOGAPS-ALPHA forecasts (hindcasts) out to 6 days capture the main features of the major warming, such as the zonal mean wind reversal, planetary-scale wave amplification, large upward Eliassen–Palm (EP) fluxes, and splitting of the polar vortex in the middle stratosphere. Forecasts beyond 6 days have reduced upward EP flux in the lower stratosphere, reduced amplitude of zonal wavenumbers 2 and 3, and a middle stratospheric vortex that does not split. Three-dimensional EP-flux diagnostics in the troposphere reveal that the longer forecasts underestimate upward-propagating planetary wave energy emanating from a significant blocking pattern over the South Atlantic that played a large role in forcing the major warming. Forecasts of less than 6 days are initialized with the blocking in place, and therefore are not required to predict the blocking onset. For a more thorough skill assessment, NOGAPS-ALPHA forecasts over 3 weeks during September–October 2002 are compared with operational NOGAPS 5-day forecasts made at the time. NOGAPS-ALPHA forecasts initialized with 2002 operational NOGAPS analyses show a modest improvement in skill over the NOGAPS operational forecasts. An additional, larger improvement is obtained when NOGAPS-ALPHA is initialized with reanalyzed 2002 fields produced with the currently operational (as of October 2003) Naval Research Laboratory (NRL) Atmospheric Variational Data Assimilation System (NAVDAS). Thus the combination of higher model top, better physical parameterizations, and better initial conditions all yield improved forecasting skill over the NOGAPS forecasts issued operationally at the time.
Abstract
Upper atmosphere sounding (UAS) channels of the Special Sensor Microwave Imager/Sounder (SSMIS) were assimilated using a high-altitude version of the Navy Global Environmental Model (NAVGEM) in order to investigate their potential for operational forecasting from the surface to the mesospause. UAS radiances were assimilated into NAVGEM using the new Community Radiative Transfer Model (CRTM) that accounts for Zeeman line splitting by geomagnetic fields. UAS radiance data from April 2010 to March 2011 are shown to be in good agreement with coincident temperature measurements from the Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) instrument that were used to simulate UAS brightness temperatures. Four NAVGEM experiments were performed during July 2010 that assimilated (i) no mesospheric observations, (ii) UAS data only, (iii) SABER and Microwave Limb Sounder (MLS) mesospheric temperatures only, and (iv) SABER, MLS, and UAS data. Zonal mean temperatures and observation − forecast differences for the UAS-only and SABER+MLS experiments are similar throughout most of the mesosphere, and show large improvements over the experiment assimilating no mesospheric observations, proving that assimilation of UAS radiances can provide a reliable large-scale constraint throughout the mesosphere for operational, high-altitude analysis. This is confirmed by comparison of solar migrating tides and the quasi-two-day wave in the mesospheric analyses. The UAS-only experiment produces realistic tidal and two-day wave amplitudes in the summer mesosphere in agreement with the experiments assimilating MLS and SABER observations, whereas the experiment with no mesospheric observations produces excessively strong mesospheric winds and two-day wave amplitudes.
Abstract
Upper atmosphere sounding (UAS) channels of the Special Sensor Microwave Imager/Sounder (SSMIS) were assimilated using a high-altitude version of the Navy Global Environmental Model (NAVGEM) in order to investigate their potential for operational forecasting from the surface to the mesospause. UAS radiances were assimilated into NAVGEM using the new Community Radiative Transfer Model (CRTM) that accounts for Zeeman line splitting by geomagnetic fields. UAS radiance data from April 2010 to March 2011 are shown to be in good agreement with coincident temperature measurements from the Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) instrument that were used to simulate UAS brightness temperatures. Four NAVGEM experiments were performed during July 2010 that assimilated (i) no mesospheric observations, (ii) UAS data only, (iii) SABER and Microwave Limb Sounder (MLS) mesospheric temperatures only, and (iv) SABER, MLS, and UAS data. Zonal mean temperatures and observation − forecast differences for the UAS-only and SABER+MLS experiments are similar throughout most of the mesosphere, and show large improvements over the experiment assimilating no mesospheric observations, proving that assimilation of UAS radiances can provide a reliable large-scale constraint throughout the mesosphere for operational, high-altitude analysis. This is confirmed by comparison of solar migrating tides and the quasi-two-day wave in the mesospheric analyses. The UAS-only experiment produces realistic tidal and two-day wave amplitudes in the summer mesosphere in agreement with the experiments assimilating MLS and SABER observations, whereas the experiment with no mesospheric observations produces excessively strong mesospheric winds and two-day wave amplitudes.