Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Lazaros Oreopoulos x
  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: All Content x
Clear All Modify Search
Nayeong Cho
,
Jackson Tan
, and
Lazaros Oreopoulos

Abstract

We present an updated cloud regime (CR) dataset based on Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6.1 cloud products, specifically, joint histograms that partition cloud fraction within distinct combinations of cloud-top pressure and cloud optical thickness ranges. The paper focuses on an edition of the CR dataset derived from our own aggregation of MODIS pixel-level cloud retrievals on an equal-area grid and prespecified 3-h UTC intervals that spatiotemporally match International Satellite Cloud Climatology Project (ISCCP) gridded cloud data. The other edition comes from the 1° daily aggregation provided by standard MODIS Level-3 data, as in previous versions of the MODIS CRs, for easier use with datasets mapped on equal-angle grids. Both editions consist of 11 clusters whose centroids are nearly identical. We provide a physical interpretation of the new CRs and aspects of their climatology that have not been previously examined, such as seasonal and interannual variability of CR frequency of occurrence. We also examine the makeup and precipitation properties of the CRs assisted by independent datasets originating from active observations and provide a first glimpse of how MODIS CRs relate to clouds as seen by ISCCP.

Free access
Lazaros Oreopoulos
,
Robert F. Cahalan
,
Alexander Marshak
, and
Guoyong Wen

Abstract

The authors propose a new cloud property retrieval technique that accounts for cloud side illumination and shadowing effects present at high solar zenith angles. The technique uses the normalized difference of nadir reflectivities (NDNR) at a conservative and an absorbing (with respect to liquid water) wavelength. It can be further combined with the inverse nonlocal independent pixel approximation (NIPA) of that corrects for radiative smoothing, thus providing a retrieval framework where all 3D cloud effects can potentially be accounted for. The effectiveness of the new technique is demonstrated using Monte Carlo simulations. Real-world application is shown to be feasible using Thematic Mapper (TM) radiance observations from Landsat-5 over the Southern Great Plains (SGP) site of the Atmospheric Radiation Measurement (ARM) Program. For the moderately oblique (45°) solar zenith angle of the available Landsat scene, NDNR gives similar regional statistics and histograms when compared with standard independent pixel approximation (IPA), but significant differences at the pixel level. Inverse NIPA is also applied for the first time on observed high-resolution radiances of overcast Landsat subscenes. The dependence of the NIPA-retrieved cloud fields on the parameters of the method is illustrated and practical issues related to the optimal choice of these parameters are discussed.

It is natural to compare novel cloud retrieval techniques with standard IPA retrievals. IPA is useful in revealing the inadequacy of plane parallel theory in certain situations and in demonstrating sensitivities to parameter choices, parameterizations, and assumptions. For example, it is found that IPA has problems in matching modeled and observed band-7 (2.2 μm) reflectance values for ∼6% of the pixels, most of which are at cloud edges. For simultaneous cloud optical depth–droplet effective radius retrievals (where a conservative and an absorptive TM band are needed), it is found that the band-4 (0.83 μm)–band-7 pair was the most well behaved, having less saturation, smaller changes in nominal calibration, and better overall consistency with modeled values than other bands. Mean values of optical depth, effective radius, and liquid water path (LWP) for typical IPA retrievals using this pair are τ = 22, r e = 11 μm, and LWP = 157 g m−2, respectively. Inclusion of aerosol scattering above clouds results in ∼8% decrease in mean cloud optical depth for an aerosol optical depth of 0.2. Degradation of instrument resolution up to ∼2 km has small effects on the optical property means and histograms, suggesting small actual cloud variability at these scales and/or radiative smoothing. Comparisons with surface instruments (microwave radiometer, pyranometer, and pyrgeometer) verify the statisitical adequacy of the IPA retrievals. Last, cloud fractions derived with a simple threshold method are compared with those from an automated procedure called Automatic Cloud Cover Assessment now in operational use for Landsat-7. For the northernmost 2000 scanlines of the scene, the cloud fraction A c is 0.585 from thresholding, as compared with A c = 0.563 for the automated procedure, and the full scene values are A c = 0.870 and A c = 0.865, respectively. This suggests that the Landsat-7 automated procedure will likely give reliable scene-averaged cloud fractions for moderately thick clouds over continental U.S. scenes similar to SGP.

Full access
Matthew Lebsock
,
Hanii Takahashi
,
Richard Roy
,
Marcin J. Kurowski
, and
Lazaros Oreopoulos

Abstract

An algorithm that derives the nonprecipitating cloud liquid water path W cld from CloudSat using a surface reference technique (SRT) is presented. The uncertainty characteristics of the SRT are evaluated. It is demonstrated that an accurate analytical formulation for the pixel-scale precision can be derived. The average precision of the SRT is estimated to be 34 g m−2 at the individual pixel scale; however, precision systematically decreases from around 30 to 40 g m−2 as cloud fraction varies from 0% to 100%. The retrievals of clear-sky W cld have a mean bias of 0.9 g m−2. Output from a large-eddy simulation coupled to a radar simulator shows that an additional bias of −8% may result from nonuniformity within the footprint of cloudy pixels. The retrieval yield for the SRT, measured relative to all warm clouds over ocean between 60°N and 60°S latitude is 43%. The SRT W cld is compared with one estimate of W cld from the Moderate Resolution Imaging Spectroradiometer (MODIS) using an adiabatic cloud profile and an effective radius derived from 3.7-μm reflectance. A strong correlation between the mean MODIS W cld and SRT W cld is found across diverse cloud regimes, but with biases in the mean W cld that are cloud-regime dependent. Overall, the mean bias of the SRT relative to MODIS is −13.1 g m−2. Systematic underestimates of W cld by the SRT resulting from nonuniform beamfilling cannot be ruled out as an explanation for the retrieval bias.

Full access
Daeho Jin
,
Lazaros Oreopoulos
,
Dongmin Lee
,
Jackson Tan
, and
Nayeong Cho

Abstract

To better understand cloud–precipitation relationships, we extend the concept of cloud regimes developed from two-dimensional joint histograms of cloud optical thickness and cloud-top pressure from MODIS to include precipitation information. Taking advantage of the high-resolution IMERG precipitation dataset, we derive cloud–precipitation “hybrid” regimes by implementing a k-means clustering algorithm with advanced initialization and objective measures to determine the optimal number of clusters. By expressing the variability of precipitation rates within 1° grid cells as histograms and varying the relative weight of cloud and precipitation information in the clustering algorithm, we obtain several editions of hybrid cloud–precipitation regimes (CPRs) and examine their characteristics. In the deep tropics, when precipitation is weighted weakly, the cloud part centroids of the hybrid regimes resemble their counterparts of cloud-only regimes, but combined clustering tightens the cloud–precipitation relationship by decreasing each regime’s precipitation variability. As precipitation weight progressively increases, the shape of the cloud part centroids becomes blunter, while the precipitation part sharpens. When cloud and precipitation are weighted equally, the CPRs representing high clouds with intermediate to heavy precipitation exhibit distinct enough features in the precipitation parts of the centroids to allow us to project them onto the 30-min IMERG domain. Such a projection overcomes the temporal sparseness of MODIS cloud observations associated with substantial rainfall, suggesting great application potential for convection-focused studies for which characterization of the diurnal cycle is essential.

Full access