Search Results

You are looking at 1 - 10 of 21 items for

  • Author or Editor: Li Jia x
  • Refine by Access: All Content x
Clear All Modify Search
Chen Li, Jing-Jia Luo, and Shuanglin Li

Abstract

The impacts of different types of El Niño–Southern Oscillation (ENSO) on the interannual negative correlation (seesaw) between the Somali cross-equatorial flow (CEF) and the Maritime Continent (MC) CEF during boreal summer (June–August) are investigated using the ECMWF twentieth-century reanalysis (ERA-20C) dataset and numerical experiments with a global atmospheric model [the Met Office Unified Model global atmosphere, version 6 (UM-GA6)]. The results suggest that ENSO plays a prominent role in governing the CEF-seesaw relation. A high positive correlation (0.86) exists between the MC CEF and Niño-3.4 index and also in the case of eastern Pacific (EP) El Niño, central Pacific (CP) El Niño, EP La Niña, and CP La Niña events. In contrast, a negative correlation (−0.35) exists between the Somali CEF and Niño-3.4 index, and this negative relation is significant only in the EP El Niño years. Further, the variation of the MC CEF is highly correlated with the local north–south sea surface temperature (SST) gradient, while the variation of the Somali CEF displays little relation with the local SST gradient. The Somali CEF may be remotely influenced by ENSO. The model results confirm that the EP El Niño plays a major role in causing the weakened Somali CEF via modifying the Walker cell. However, the impact of the EP El Niño on the Somali CEF differs with different seasonal background. It is also found that the interannual CEF seesaw displays a multidecadal change before and after the 1950s, which is linked with the multidecadal strengthening of the intensity of the EP ENSO.

Full access
Haolu Shang, Li Jia, and Massimo Menenti

Abstract

The soil wetness condition is a useful indicator of inundation hazard in floodplains, such as the Poyang Lake floodplain. Special Sensor Microwave Imager (SSM/I) passive microwave data were used to monitor water-saturated soil and open water areas of the Poyang Lake floodplain from 2001 to 2008, capturing the inundation patterns of this area in space and time. The polarization difference brightness temperature (PDBT) at 37 GHz is sensitive to the water extension even under dense vegetation. The zero-order radiative transfer model was simplified to retrieve the vertical–horizontal (V–H)-polarized effective emissivity difference from the PDBT at 37 GHz. Vegetation fractional area and vegetation transmission function were derived from NDVI to represent the vegetation attenuation. This effective emissivity difference has a quasi-linear relationship with the fractional area of water-saturated soil and standing water, no matter the frequency. Using the multifrequency-polarization surface emission (Q p) model and the Dobson model of the soil–water mixture, the two segments of this relationship were combined into a quasi-linear model. Comparing the retrieved water-saturated soil and standing water area of Poyang Lake with the lake area obtained from the MODIS and synthetic aperture radar (SAR) image at higher spatial resolution, the calculations show a good fit with the MODIS and SAR data, with R 2 = 0.7664 and relative RMSE = 17.74%. The cross-correlation analysis shows that the Poyang Lake extension fluctuates with a 5-day time lag with the upstream land area of water-saturated soil and standing water. Since the closure of the Three Gorges Dam, this relationship is more evident.

Full access
Jia-Lin Lin, Taotao Qian, Toshiaki Shinoda, and Shuanglin Li

Abstract

The hypothesis of convective quasi-equilibrium (CQE) has dominated thinking about the interaction between deep moist convection and the environment for at least two decades. In this view, deep convection develops or decays almost instantly to remove any changes of convective instability, making the tropospheric temperature always tied to the boundary layer moist static energy. The present study examines the validity of the CQE hypothesis at different vertical levels using long-term sounding data from tropical convection centers. The results show that the tropical atmosphere is far from the CQE with much weaker warming in the middle and upper troposphere associated with the increase of boundary layer moist static energy. This is true for all the time scales resolved by the observational data, ranging from hourly to interannual and decadal variability. It is possibly caused by the ubiquitous existence of shallow convection and stratiform precipitation, both leading to sign reversal of heating from lower to upper troposphere. The simulations by 42 global climate models from phases 3 and 5 of the Coupled Model Intercomparsion Project (CMIP3 and CMIP5) are also analyzed and compared with the observations.

Full access
Chi-Cherng Hong, Tim Li, and Jing-Jia Luo

Abstract

In this second part of a two-part paper, the mechanism for the amplitude asymmetry of SST anomalies (SSTA) between positive and negative Indian Ocean dipole (IOD) events is investigated through the diagnosis of coupled model simulations. Same as the observed in Part I, a significant negative skewness appears in the IOD east pole (IODE) in September–November (SON), whereas there is no significant skewness in the IOD west pole (IODW). A sensitivity experiment shows that the negative skewness in IODE appears even in the case when the ENSO is absent.

The diagnosis of the model mixed layer heat budget reveals that the negative skewness is primarily induced by the nonlinear ocean temperature advection and the asymmetry of the cloud–radiation–SST feedback, consistent with the observation (Part I). However, the simulated latent heat flux anomaly is greatly underestimated in IODE during the IOD developing stage [June–September (JJAS)]. As a result, the net surface heat flux acts as strong thermal damping. The underestimation of the latent heat flux anomaly in the IODE is probably caused by the westward shift of along-coast wind anomalies off Sumatra.

Full access
Jiye Wu, Yue Li, Jing-Jia Luo, and Xianan Jiang

Abstract

The Madden-Julian Oscillation (MJO) provides an important source of sub-seasonal to seasonal (S2S) predictability. Improved MJO prediction can be beneficial to S2S prediction of global climate and associated weather extremes. In this study, hindcasts based on an atmosphere-ocean coupled general circulation model (CGCM) are compared to those based on atmosphere general circulation models (AGCMs) to investigate influences of air-sea interactions on MJO prediction. Our results suggest that MJO prediction skill can be extended about one week longer in the CGCM hindcasts than AGCM-only experiments, particularly for boreal winter predictions.

Further analysis suggests that improved MJO prediction in the CGCM is closely associated with improved representation of moistening processes. Compared to the AGCM experiments, the CGCM better predicts the boundary-layer moisture preconditioning to the east of MJO convection, which is generally considered crucial for triggering MJO deep convection. Meanwhile, the widely extended east-west asymmetric structure in free-tropospheric moisture tendency anomalies relative to the MJO convection center as seen in the observations is also well predicted in the CGCM. Improved prediction of MJO moisture processes in CGCM is closely associated with better representation of the zonal scale of MJO circulation and stronger Kelvin waves to the east of MJO convection, both of which have been recently suggested conductive for MJO eastward propagation. The above improvements by including air-sea coupling could be largely attributed to the realistic MJO-induced SST fluctuations through the convection-SST feedback. This study confirms a critical role of atmosphere-ocean coupling for the improvement of MJO prediction.

Restricted access
Chen Li, Jing-Jia Luo, Shuanglin Li, Harry Hendon, Oscar Alves, and Craig MacLachlan

Abstract

Predictive skills of the Somali cross-equatorial flow (CEF) and the Maritime Continent (MC) CEF during boreal summer are assessed using three ensemble seasonal forecasting systems, including the coarse-resolution Predictive Ocean Atmospheric Model for Australia (POAMA, version 2), the intermediate-resolution Scale Interaction Experiment–Frontier Research Center for Global Change (SINTEX-F), and the high-resolution seasonal prediction version of the Australian Community Climate and Earth System Simulator (ACCESS-S1) model. Retrospective prediction results suggest that prediction of the Somali CEF is more challenging than that of the MC CEF. While both the individual models and the multimodel ensemble (MME) mean show useful skill (with the anomaly correlation coefficient being above 0.5) in predicting the MC CEF up to 5-month lead, only ACCESS-S1 and the MME can skillfully predict the Somali CEF up to 2-month lead. Encouragingly, the CEF seesaw index (defined as the difference of the two CEFs as a measure of the negative phase relation between them) can be skillfully predicted up to 4–5 months ahead by SINTEX-F, ACCESS-S1, and the MME. Among the three models, the high-resolution ACCESS-S1 model generally shows the highest skill in predicting the individual CEFs, the CEF seesaw, as well as the CEF seesaw index–related precipitation anomaly pattern in Asia and northern Australia. Consistent with the strong influence of ENSO on the CEFs, the skill in predicting the CEFs depends on the model’s ability in predicting not only the eastern Pacific SST anomaly but also the anomalous Walker circulation that brings ENSO’s influence to bear on the CEFs.

Full access
Jian Ling, Chongyin Li, Tim Li, Xiaolong Jia, Boualem Khouider, Eric Maloney, Frederic Vitart, Ziniu Xiao, and Chidong Zhang
Full access
Wei Li, Rongyun Pan, Zhihong Jiang, Yang Chen, Laurent Li, Jing-Jia Luo, Panmao Zhai, Yuchen Shen, and Jinhua Yu

Abstract

Future changes in the frequency of extreme drought events are of vital importance for risk assessment and relevant policy making. But a reliable estimation of their probability is intrinsically challenging due to limited available observations or simulations. Here, we use two large ensemble simulations, 50 members from CanESM2 and 40 members from CESM1 under the future RCP8.5 scenario, to elaborate a reliable projection of the 100-yr drought events (once in a century) under different warming levels. It is however necessary to first remove systematic biases for the simulated temperature and precipitation through a bias-correction method based on quantile mapping. Droughts are diagnosed with the standardized precipitation evapotranspiration index (SPEI), which considers both precipitation and potential evapotranspiration (PET, involving temperature). The results show that the frequency of extreme droughts increases with the continued global warming. Some differences between the two ensembles are also observed, especially for high warming levels. The China-averaged probability of 100-yr droughts that occur once in a century in the current climate increase by a factor of 1.52 (1.44) and 1.90 (2.02) under 1.5°C and 2°C warming levels in CanESM2-LE (CESM1-LE), respectively. A simple statistical scheme shows that the increasing future risk of extreme droughts is mainly due to the increasing effect of PET on the occurrence of extreme drought events, while the effect of precipitation almost keeps constant with global warming.

Open access
Quan Liu, Jiannong Quan, Xingcan Jia, Zhaobin Sun, Xia Li, Yang Gao, and Yangang Liu

Abstract

Aerosol samples were collected over Beijing, China, during several flights in November 2011. Aerosol composition of nonrefractory submicron particles (NR-PM1) was measured by an Aerodyne compact time-of-flight aerosol mass spectrometer (C-ToF-AMS). This measurement on the aircraft provided vertical distribution of aerosol species over Beijing, including sulfate (SO4), nitrate (NO3), ammonium (NH4), chloride (Chl), and organic aerosols [OA; hydrocarbon-like OA (HOA) and oxygenated OA (OOA)]. The observations showed that aerosol compositions varied drastically with altitude, especially near the top of the planetary boundary layer (PBL). On average, organics (34%) and nitrate (32%) were dominant components in the PBL, followed by ammonium (15%), sulfate (14%), and chloride (4%); in the free troposphere (FT), sulfate (34%) and organics (28%) were dominant components, followed by ammonium (20%), nitrate (19%), and chloride (1%). The dominant OA species was primarily HOA in the PBL but changed to OOA in the FT. For sulfate, nitrate, and ammonium, the sulfate mass fraction increased from the PBL to the FT, nitrate mass fraction decreased, and ammonium remained relatively constant. Analysis of the sulfate-to-nitrate molar ratio further indicated that this ratio was usually less than one in the FT but larger than one in the PBL. Further analysis revealed that the vertical aerosol composition profiles were influenced by complex processes, including PBL structure, regional transportation, emission variation, and the aging process of aerosols and gaseous precursors during vertical diffusion.

Full access
Joshua-Xiouhua Fu, Wanqiu Wang, Yuejian Zhu, Hong-Li Ren, Xiaolong Jia, and Toshiaki Shinoda

Abstract

Six sets of hindcasts conducted with the NCEP GFS have been used to study the SST-feedback processes and assess the relative contributions of atmospheric internal dynamics and SST feedback on the October and November MJO events observed during the DYNAMO IOP (Oct- and Nov-MJO). The hindcasts are carried out with three variants of the Arakawa–Shubert cumulus scheme under TMI and climatological SST conditions. The positive intraseasonal SST anomaly along with its convergent Laplacian produces systematic surface disturbances, which include enhanced surface convergence, evaporation, and equivalent potential temperature no matter which cumulus scheme is used. Whether these surface disturbances can grow into a robust response of MJO convection depends on the characteristics of the cumulus schemes used. If the cumulus scheme is able to amplify the SST-initiated surface disturbances through a strong upward–downward feedback, the model is able to produce a robust MJO convection response to the underlying SST anomaly; otherwise, the model will not produce any significant SST feedback. A new method has been developed to quantify the “potential” and “practical” contributions of the atmospheric internal dynamics and SST feedback on the MJOs. The present results suggest that, potentially, the SST feedback could have larger contributions than the atmospheric internal dynamics. Practically, the contributions to the Oct- and Nov-MJO events are, respectively, dominated by atmospheric internal dynamics and SST feedback. Averaged over the entire period, the contributions from the atmospheric internal dynamics and SST feedback are about half and half.

Open access