Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Li Jia x
  • Journal of Atmospheric and Oceanic Technology x
  • Refine by Access: All Content x
Clear All Modify Search
Fang-Fang Li, Ying-Hui Jia, Guang-Qian Wang, and Jun Qiu


Sound waves have proven to be effective in promoting the interaction and aggregation of droplets. It is necessary to theoretically study the motion of particles in a sound field to develop new acoustic technology for precipitation enhancement. In this paper, the motion of cloud droplets due to a traveling sound wave field emitted from the ground to the air is simulated using the motion equation of point particles. The force condition of the particles in the oscillating flow field is analyzed. Meanwhile, the effects of droplet size, sound frequency, and sound pressure level (SPL) on the velocity and displacement of the droplets are also investigated. The results show that Stokes force and gravity play a dominant role in the falling process of cloud droplets, and the effect of the sound wave is mainly reflected in the fluctuation of velocity and displacement, which also promotes the displacement of cloud droplets to a certain extent. The maximum displacement increments of cloud droplets of 10 µm can reach 9200 µm due to the action of sound waves of 50 Hz and 143.4 dB. The SPL required for a noticeable velocity fluctuation for droplets of 10 µm with frequency of 50 Hz is 88.2 dB. When SPL < 100 dB and frequency > 500 Hz, the effect is negligible. The cloud droplet size plays a significant role in the motion, and the sound action is weaker for larger particles. For a smaller sound frequency and higher SPL, the effect of the sound wave is more prominent.

Free access