Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Liang Chen x
  • Journal of Atmospheric and Oceanic Technology x
  • Refine by Access: All Content x
Clear All Modify Search
Quanhua Liu
,
Xingming Liang
,
Yong Han
,
Paul van Delst
,
Yong Chen
,
Alexander Ignatov
, and
Fuzhong Weng

Abstract

The Community Radiative Transfer Model (CRTM) developed at the Joint Center for Satellite Data Assimilation (JCSDA) is used in conjunction with a daily sea surface temperature (SST) and the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) atmospheric data and surface wind to calculate clear-sky top-of-atmosphere (TOA) brightness temperatures (BTs) in three Advanced Very High Resolution Radiometer (AVHRR) thermal infrared channels over global oceans. CRTM calculations are routinely performed by the sea surface temperature team for four AVHRR instruments on board the National Oceanic and Atmospheric Administration (NOAA) satellites NOAA-16, NOAA-17, and NOAA-18 and the Meteorological Operation (MetOp) satellite MetOp-A, and they are compared with clear-sky TOA BTs produced by the operational AVHRR Clear-Sky Processor for Oceans (ACSPO). It was observed that the model minus observation (M−O) bias in the NOAA-16 AVHRR channel 3b (Ch3b) centered at 3.7 μm experienced a discontinuity of ∼0.3 K when a new CRTM version 1.1 (v.1.1) was implemented in ACSPO processing in September 2008. No anomalies occurred in any other AVHRR channel or for any other platform. This study shows that this discontinuity is caused by the out-of-band response in NOAA-16 AVHRR Ch3b and by using a single layer to the NCEP GFS temperature profiles above 10 hPa for the alpha version of CRTM. The problem has been solved in CRTM v.1.1, which uses one of the six standard atmospheres to fill in the missing data above the top pressure level in the input NCEP GFS data. It is found that, because of the out-of-band response, the NOAA-16 AVHRR Ch3b has sensitivity to atmospheric temperature at high altitudes. This analysis also helped to resolve another anomaly in the absorption bands of the High Resolution Infrared Radiation Sounder (HIRS) sensor, whose radiances and Jacobians were affected to a much greater extent by this CRTM inconsistency.

Full access
Xiaodong Shang
,
Yongfeng Qi
,
Guiying Chen
,
Changrong Liang
,
Rolf G. Lueck
,
Brett Prairie
, and
Hua Li

Abstract

Measurements of turbulence in the deep ocean, particularly close to the bottom, are extremely sparse because of the difficulty and operational risk of obtaining deep profiles near the seafloor. A newly developed expendable instrument—the VMP-X (Vertical Microstructure Profiler–Expendable)—carries two microstructure shear probes to measure the fluctuations of vertical shear into the dissipation range and can profile down to a depth of 6000 m. Data from nine VMP-X profiles in the western Pacific Ocean near 11.6°N over rough topography display bottom-intensified turbulence with dissipation rates increasing by two factors of 10 to 4 W kg−1 within 200 m above the bottom. In contrast, over smooth topography in the southern South China Sea near 11°N, three profiles show that turbulence in the bottom boundary layer increases only slightly, with dissipation rates reaching 1 W kg−1. The eddy diffusivity over rough topography reached to 5 m2 s−1. The average diffusivity over all depths was 0.3 and 0.9 m2 s−1 for the tests in the southern South China Sea and in the western Pacific Ocean, respectively, and these values are much larger than previous estimates of less than ≈0.1 m2 s−1 for the main thermocline.

Full access