Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Liang Chen x
  • Monthly Weather Review x
  • Refine by Access: All Content x
Clear All Modify Search
Feng Chen
,
Xudong Liang
, and
Hao Ma

Abstract

An improved Doppler radar radial velocity assimilation observation operator is proposed based on the integrating velocity–azimuth process (IVAP) method. This improved operator can ingest both radial wind and its spatial distribution characteristics to deduce the two components of the mean wind within a given area. With this operator, the system can be used to assimilate information from tangential wind and radial wind. On the other hand, because the improved observation operator is defined within a given area, which can be uniformly chosen in both the observation and analysis coordinate systems, it has a thinning function. The traditional observation operator and the improved observation operator, along with their corresponding data processing modules, were implemented in the community Gridpoint Statistical Interpolation analysis system (GSI) to demonstrate the superiority of the improved operator. The results of single analysis unit experiments revealed that the two operators are comparable when the analysis unit is small. When the analysis unit becomes larger, the analysis results of the improved operator are better than those of the traditional operator because the former can ingest more wind information than the latter. The results of a typhoon case study indicated that both operators effectively ingested radial wind information and produced more reasonable typhoon structures than those in the background fields. The tangential velocity relative to the radar was retrieved by the improved operator through ingesting tangential wind information from the spatial distribution characteristics of radial wind. Because of the improved vortex intensity and structure, obvious improvements were seen in both track and intensity predictions when the improved operator was used.

Open access
Sijia Zhang
,
Zhaoming Liang
,
Donghai Wang
, and
Guixing Chen

Abstract

A local long-lived convective system developed at midnight over inland South China, producing record-breaking rainfall in Guangzhou on 7 May 2017. This study examines the physical processes responsible for nocturnal convection initiation (CI) and growth. Observational analyses show that the CI occurs in the warm sector under weakly forced synoptic conditions at 500 hPa, while moderate but nocturnally enhanced low-level southeasterlies with a mesoscale moist tongue at 925 hPa intrude inland from the northern South China Sea. Convection-permitting model results show that mesoscale low-level convergence and increased moisture at the leading edge of the southeasterlies are favorable for CI dynamically and thermodynamically. Local ascent and potential instability are further enhanced by orographic lifting and warm moist air from the urban surface, respectively, which trigger convection in northern Guangzhou. The mesoscale moist tongue of southeasterly flows then meets convectively generated outflows, thereby maintaining strong updrafts and continuously triggering back-building convective cells in eastern Guangzhou. Sensitivity tests are conducted to estimate the relative roles of ambient southeasterly moist tongue and urban thermal effects. The southeasterly moist tongue provides moisture that is crucial for CI, while warm moist air from the urban surface is lifted at the leading edge of the southeasterlies and locally facilitates convection. Therefore, the mesoscale processes of lifting and moistening due to nocturnal southeasterlies and their strong interaction with the local factors (orographic lifting, urban heating, and cold-pool-related ascent) provide the sustained lifting and instability crucial for triggering the local long-lived convective systems. The multiscale processes shed light on the understanding of the nocturnal warm-sector heavy rainfall inland.

Open access