Search Results
You are looking at 1 - 4 of 4 items for :
- Author or Editor: Liao-Fan Lin x
- Journal of Hydrometeorology x
- Refine by Access: All Content x
ABSTRACT
Satellite and model precipitation such as the Global Precipitation Measurement (GPM) data are valuable in hydrometeorological applications. This study investigates the performance of various satellite and model precipitation products in Taiwan from 2015 to 2017, including data derived from the Integrated Multisatellite Retrievals for GPM Early and Final Runs (IMERG_E and IMERG_F), Global Satellite Mapping of Precipitation in near–real time (GSMaP_NRT), and the Weather Research and Forecasting (WRF) Model. We assess these products by comparing them against data collected from 304 surface stations and gauge-based gridded data. Our assessment emphasizes factors influential in precipitation estimation, such as season, temperature, elevation, and extreme event. Further, we assess the hydrological response to each precipitation product via continuous flow simulation in two selected watersheds. The results indicate that the performance of these precipitation products is subject to seasonal and regional variations. The satellite products (i.e., IMERG and GSMaP) perform better than the model (i.e., WRF) in the warm season and vice versa in the cold season, most apparently in northern Taiwan. For selected extreme events, WRF can simulate better rainfall amount and distribution. The seasonal and regional variations in precipitation estimation are also reflected in flow simulations: IMERG in general produces the most rational flow simulation, GSMaP tends to overestimate and be least useful for hydrological applications, while WRF simulates high flows that show accurate time to the peak flows and are better in the southern watershed.
ABSTRACT
Satellite and model precipitation such as the Global Precipitation Measurement (GPM) data are valuable in hydrometeorological applications. This study investigates the performance of various satellite and model precipitation products in Taiwan from 2015 to 2017, including data derived from the Integrated Multisatellite Retrievals for GPM Early and Final Runs (IMERG_E and IMERG_F), Global Satellite Mapping of Precipitation in near–real time (GSMaP_NRT), and the Weather Research and Forecasting (WRF) Model. We assess these products by comparing them against data collected from 304 surface stations and gauge-based gridded data. Our assessment emphasizes factors influential in precipitation estimation, such as season, temperature, elevation, and extreme event. Further, we assess the hydrological response to each precipitation product via continuous flow simulation in two selected watersheds. The results indicate that the performance of these precipitation products is subject to seasonal and regional variations. The satellite products (i.e., IMERG and GSMaP) perform better than the model (i.e., WRF) in the warm season and vice versa in the cold season, most apparently in northern Taiwan. For selected extreme events, WRF can simulate better rainfall amount and distribution. The seasonal and regional variations in precipitation estimation are also reflected in flow simulations: IMERG in general produces the most rational flow simulation, GSMaP tends to overestimate and be least useful for hydrological applications, while WRF simulates high flows that show accurate time to the peak flows and are better in the southern watershed.
Abstract
Hydrological applications rely on the availability and quality of precipitation products, especially model- and satellite-based products for use in areas without ground measurements. It is known that the quality of model- and satellite-based precipitation products is complementary: model-based products exhibit high quality during cold seasons while satellite-based products are better during warm seasons. To explore the complementary behavior of the quality of the precipitation products, this study uses 2-m air temperature as auxiliary information to evaluate high-resolution (0.1°/hourly) precipitation estimates from the Weather Research and Forecasting (WRF) Model and from the version 5 Integrated Multisatellite Retrievals for GPM (IMERG) algorithm (i.e., early and final runs). The products are evaluated relative to the reference NCEP Stage IV precipitation estimates over the central United States during August 2015–July 2017. Results show that the IMERG final-run estimates are nearly unbiased, while the IMERG early-run and the WRF estimates are positively biased. The WRF estimates exhibit high correlations with the reference data when the temperature falls below 280 K. The IMERG estimates, both early and final runs, do so when the temperature exceeds 280 K. Moreover, the complementary behavior of the WRF and the IMERG products conditioned on air temperature does not vary with either season or location.
Abstract
Hydrological applications rely on the availability and quality of precipitation products, especially model- and satellite-based products for use in areas without ground measurements. It is known that the quality of model- and satellite-based precipitation products is complementary: model-based products exhibit high quality during cold seasons while satellite-based products are better during warm seasons. To explore the complementary behavior of the quality of the precipitation products, this study uses 2-m air temperature as auxiliary information to evaluate high-resolution (0.1°/hourly) precipitation estimates from the Weather Research and Forecasting (WRF) Model and from the version 5 Integrated Multisatellite Retrievals for GPM (IMERG) algorithm (i.e., early and final runs). The products are evaluated relative to the reference NCEP Stage IV precipitation estimates over the central United States during August 2015–July 2017. Results show that the IMERG final-run estimates are nearly unbiased, while the IMERG early-run and the WRF estimates are positively biased. The WRF estimates exhibit high correlations with the reference data when the temperature falls below 280 K. The IMERG estimates, both early and final runs, do so when the temperature exceeds 280 K. Moreover, the complementary behavior of the WRF and the IMERG products conditioned on air temperature does not vary with either season or location.
Abstract
The objective of this study is to develop a framework for dynamically downscaling spaceborne precipitation products using the Weather Research and Forecasting (WRF) Model with four-dimensional variational data assimilation (4D-Var). Numerical experiments have been conducted to 1) understand the sensitivity of precipitation downscaling through point-scale precipitation data assimilation and 2) investigate the impact of seasonality and associated changes in precipitation-generating mechanisms on the quality of spatiotemporal downscaling of precipitation. The point-scale experiment suggests that assimilating precipitation can significantly affect the precipitation analysis, forecast, and downscaling. Because of occasional overestimation or underestimation of small-scale summertime precipitation extremes, the numerical experiments presented here demonstrate that the wintertime assimilation produces downscaled precipitation estimates that are in closer agreement with the reference National Centers for Environmental Prediction stage IV dataset than similar summertime experiments. This study concludes that the WRF 4D-Var system is able to effectively downscale a 6-h precipitation product with a spatial resolution of 20 km to hourly precipitation with a spatial resolution of less than 10 km in grid spacing—relevant to finescale hydrologic applications for the era of the Global Precipitation Measurement mission.
Abstract
The objective of this study is to develop a framework for dynamically downscaling spaceborne precipitation products using the Weather Research and Forecasting (WRF) Model with four-dimensional variational data assimilation (4D-Var). Numerical experiments have been conducted to 1) understand the sensitivity of precipitation downscaling through point-scale precipitation data assimilation and 2) investigate the impact of seasonality and associated changes in precipitation-generating mechanisms on the quality of spatiotemporal downscaling of precipitation. The point-scale experiment suggests that assimilating precipitation can significantly affect the precipitation analysis, forecast, and downscaling. Because of occasional overestimation or underestimation of small-scale summertime precipitation extremes, the numerical experiments presented here demonstrate that the wintertime assimilation produces downscaled precipitation estimates that are in closer agreement with the reference National Centers for Environmental Prediction stage IV dataset than similar summertime experiments. This study concludes that the WRF 4D-Var system is able to effectively downscale a 6-h precipitation product with a spatial resolution of 20 km to hourly precipitation with a spatial resolution of less than 10 km in grid spacing—relevant to finescale hydrologic applications for the era of the Global Precipitation Measurement mission.
Abstract
Initialization methods are needed for geophysical components of Earth system prediction models. These methods are needed from medium-range to decadal predictions and also for short-range Earth system forecasts in support of safety (e.g., severe weather), economic (e.g., energy), and other applications. Strongly coupled land–atmosphere data assimilation (SCDA), producing balanced initial conditions across the land–atmosphere components, has not yet been introduced to operational numerical weather prediction (NWP) systems. Most NWP systems have evolved separate data assimilation (DA) procedures for the atmosphere versus land/snow system components. This separated method has been classified as a weakly coupled DA system (WCDA). In the NOAA operational short-range weather models, a moderately coupled land–snow–atmosphere assimilation method (MCLDA) has been implemented, a step forward from WCDA toward SCDA. The atmosphere and land (including snow) variables are both updated within the DA using the same set of observations (aircraft, radiosonde, satellite radiances, surface, etc.). Using this assimilation method, land surface state variables have cycled continuously for 6 years since 2015 for the 3-km NOAA HRRR model and with CONUS cycling since 1997. Month-long experiments were conducted with and without MCLDA for both winter and summer seasons using the 13-km Rapid Refresh model with atmosphere (50 levels), soil (9 levels), and snow (up to 2 layers if present) on the same horizontal grid. Improvements were evident for 2-m temperature for all times of day out to 6–12 h for both seasons but stronger in winter. Better temperature forecasts were also shown in the 1000–900-hPa layer corresponding roughly to the boundary layer.
Significance Statement
Accuracy of weather models depends on accurate initial conditions for soil temperature and moisture as well as for the atmosphere itself. This paper describes a moderately coupled data assimilation method that modifies soil conditions based on forecast error corrections indicated by atmospheric observations. This method has been tested for a month-long period in summer and winter and shown to consistently improve short-range forecasts of 2-m temperature and moisture. This coupled data assimilation method is used already in NOAA operational short-range models to improve its prediction skill for clouds, convective storms, and general weather conditions.
Abstract
Initialization methods are needed for geophysical components of Earth system prediction models. These methods are needed from medium-range to decadal predictions and also for short-range Earth system forecasts in support of safety (e.g., severe weather), economic (e.g., energy), and other applications. Strongly coupled land–atmosphere data assimilation (SCDA), producing balanced initial conditions across the land–atmosphere components, has not yet been introduced to operational numerical weather prediction (NWP) systems. Most NWP systems have evolved separate data assimilation (DA) procedures for the atmosphere versus land/snow system components. This separated method has been classified as a weakly coupled DA system (WCDA). In the NOAA operational short-range weather models, a moderately coupled land–snow–atmosphere assimilation method (MCLDA) has been implemented, a step forward from WCDA toward SCDA. The atmosphere and land (including snow) variables are both updated within the DA using the same set of observations (aircraft, radiosonde, satellite radiances, surface, etc.). Using this assimilation method, land surface state variables have cycled continuously for 6 years since 2015 for the 3-km NOAA HRRR model and with CONUS cycling since 1997. Month-long experiments were conducted with and without MCLDA for both winter and summer seasons using the 13-km Rapid Refresh model with atmosphere (50 levels), soil (9 levels), and snow (up to 2 layers if present) on the same horizontal grid. Improvements were evident for 2-m temperature for all times of day out to 6–12 h for both seasons but stronger in winter. Better temperature forecasts were also shown in the 1000–900-hPa layer corresponding roughly to the boundary layer.
Significance Statement
Accuracy of weather models depends on accurate initial conditions for soil temperature and moisture as well as for the atmosphere itself. This paper describes a moderately coupled data assimilation method that modifies soil conditions based on forecast error corrections indicated by atmospheric observations. This method has been tested for a month-long period in summer and winter and shown to consistently improve short-range forecasts of 2-m temperature and moisture. This coupled data assimilation method is used already in NOAA operational short-range models to improve its prediction skill for clouds, convective storms, and general weather conditions.