Search Results
You are looking at 1 - 10 of 34 items for
- Author or Editor: Lisan Yu x
- Refine by Access: All Content x
Abstract
Global estimates of oceanic evaporation (Evp) from 1958 to 2005 have been recently developed by the Objectively Analyzed Air–Sea Fluxes (OAFlux) project at the Woods Hole Oceanographic Institution (WHOI). The nearly 50-yr time series shows that the decadal change of the global oceanic evaporation (Evp) is marked by a distinct transition from a downward trend to an upward trend around 1977–78. Since the transition, the global oceanic Evp has been up about 11 cm yr−1 (∼10%), from a low at 103 cm yr−1 in 1977 to a peak at 114 cm yr−1 in 2003. The increase in Evp was most dramatic during the 1990s. The uncertainty of the estimates is about ±2.74 cm yr−1. By utilizing the newly developed datasets of Evp and related air–sea variables, the study investigated the cause of the decadal change in oceanic Evp. The decadal differences between the 1990s and the 1970s indicates that the increase of Evp in the 1990s occurred over a global scale and had spatially coherent structures. Larger Evp is most pronounced in two key regions—one is the paths of the global western boundary currents and their extensions, and the other is the tropical Indo-Pacific warm water pools. It is also found that Evp was enlarged primarily during the hemispheric wintertime (defined as the mean of December–February for the northern oceans and June–August for the southern oceans). Despite the dominant upward tendency over the global basins, a slight reduction in Evp appeared in such regions as the subtropical centers of the Evp maxima as well as the eastern equatorial Pacific and Atlantic cold tongues.
An empirical orthogonal function (EOF) analysis was performed for the yearly winter-mean time series of Evp and the related air–sea variables [i.e., wind speed (U) and air–sea humidity differences (dq)]. The analysis suggested a dominant role of the wind forcing in the decadal change of both Evp and dq. It is hypothesized that wind impacts Evp in two ways. The first way is direct: the greater wind speed induces more evaporation by carrying water vapor away from the evaporating surface to allow the air–sea humidity gradients to be reestablished at a faster pace. The second way is indirect: the enhanced surface wind strengthens the wind-driven subtropical gyre, which in turn drives a greater heat transport by the western boundary currents, warms up SST along the paths of the currents and extensions, and causes more evaporation by enlarging the air–sea humidity gradients. The EOF analysis performed for the time series of the global annual-mean Evp fields showed that the first three EOF modes account for nearly 50% of the total variance. The mode 1 variability represents the upward trend in Evp after 1978 and is attributable to the increased U, and the mode 2 variability explains much of the downward trend in Evp before 1978 and is correlated to the global dq variability. The EOF mode 3 of Evp captures the interannual variability of Evp on time scales of the El Niño–Southern Oscillation, with the center of action over the eastern equatorial Pacific.
Abstract
Global estimates of oceanic evaporation (Evp) from 1958 to 2005 have been recently developed by the Objectively Analyzed Air–Sea Fluxes (OAFlux) project at the Woods Hole Oceanographic Institution (WHOI). The nearly 50-yr time series shows that the decadal change of the global oceanic evaporation (Evp) is marked by a distinct transition from a downward trend to an upward trend around 1977–78. Since the transition, the global oceanic Evp has been up about 11 cm yr−1 (∼10%), from a low at 103 cm yr−1 in 1977 to a peak at 114 cm yr−1 in 2003. The increase in Evp was most dramatic during the 1990s. The uncertainty of the estimates is about ±2.74 cm yr−1. By utilizing the newly developed datasets of Evp and related air–sea variables, the study investigated the cause of the decadal change in oceanic Evp. The decadal differences between the 1990s and the 1970s indicates that the increase of Evp in the 1990s occurred over a global scale and had spatially coherent structures. Larger Evp is most pronounced in two key regions—one is the paths of the global western boundary currents and their extensions, and the other is the tropical Indo-Pacific warm water pools. It is also found that Evp was enlarged primarily during the hemispheric wintertime (defined as the mean of December–February for the northern oceans and June–August for the southern oceans). Despite the dominant upward tendency over the global basins, a slight reduction in Evp appeared in such regions as the subtropical centers of the Evp maxima as well as the eastern equatorial Pacific and Atlantic cold tongues.
An empirical orthogonal function (EOF) analysis was performed for the yearly winter-mean time series of Evp and the related air–sea variables [i.e., wind speed (U) and air–sea humidity differences (dq)]. The analysis suggested a dominant role of the wind forcing in the decadal change of both Evp and dq. It is hypothesized that wind impacts Evp in two ways. The first way is direct: the greater wind speed induces more evaporation by carrying water vapor away from the evaporating surface to allow the air–sea humidity gradients to be reestablished at a faster pace. The second way is indirect: the enhanced surface wind strengthens the wind-driven subtropical gyre, which in turn drives a greater heat transport by the western boundary currents, warms up SST along the paths of the currents and extensions, and causes more evaporation by enlarging the air–sea humidity gradients. The EOF analysis performed for the time series of the global annual-mean Evp fields showed that the first three EOF modes account for nearly 50% of the total variance. The mode 1 variability represents the upward trend in Evp after 1978 and is attributable to the increased U, and the mode 2 variability explains much of the downward trend in Evp before 1978 and is correlated to the global dq variability. The EOF mode 3 of Evp captures the interannual variability of Evp on time scales of the El Niño–Southern Oscillation, with the center of action over the eastern equatorial Pacific.
Abstract
The existence of a cool and salty sea surface skin under evaporation was first proposed by Saunders in 1967, but few efforts have since been made to perceive the salt component of the skin layer. With two salinity missions scheduled to launch in the coming years, this study attempted to revisit the Saunders concept and to utilize presently available air–sea forcing datasets to analyze, understand, and interpret the effect of the salty skin and its implication for remote sensing of ocean salinity.
Similar to surface cooling, the skin salinification would occur primarily at low and midlatitudes in regions that are characterized by low winds or high evaporation. On average, the skin is saltier than the interior water by 0.05–0.15 psu and cooler by 0.2°–0.5°C. The cooler and saltier skin at the top is always statically unstable, and the tendency to overturn is controlled by cooling. Once the skin layer overturns, the time to reestablish the full increase of skin salinity was reported to be on the order of 15 min, which is approximately 90 times slower than that for skin temperature. Because the radiation received from a footprint is averaged over an area to give a single pixel value, the slow recovery by the salt diffusion process might cause a slight reduction in area-averaged skin salinity and thus obscure the salty skin effect on radiometer retrievals. In the presence of many geophysical error sources in remote sensing of ocean salinity, the salt enrichment at the surface skin does not appear to be a concern.
Abstract
The existence of a cool and salty sea surface skin under evaporation was first proposed by Saunders in 1967, but few efforts have since been made to perceive the salt component of the skin layer. With two salinity missions scheduled to launch in the coming years, this study attempted to revisit the Saunders concept and to utilize presently available air–sea forcing datasets to analyze, understand, and interpret the effect of the salty skin and its implication for remote sensing of ocean salinity.
Similar to surface cooling, the skin salinification would occur primarily at low and midlatitudes in regions that are characterized by low winds or high evaporation. On average, the skin is saltier than the interior water by 0.05–0.15 psu and cooler by 0.2°–0.5°C. The cooler and saltier skin at the top is always statically unstable, and the tendency to overturn is controlled by cooling. Once the skin layer overturns, the time to reestablish the full increase of skin salinity was reported to be on the order of 15 min, which is approximately 90 times slower than that for skin temperature. Because the radiation received from a footprint is averaged over an area to give a single pixel value, the slow recovery by the salt diffusion process might cause a slight reduction in area-averaged skin salinity and thus obscure the salty skin effect on radiometer retrievals. In the presence of many geophysical error sources in remote sensing of ocean salinity, the salt enrichment at the surface skin does not appear to be a concern.
Abstract
The correlation between parameters characterizing observed westerly wind bursts (WWBs) in the equatorial Pacific and the large-scale SST is analyzed using singular value decomposition. The WWB parameters include the amplitude, location, scale, and probability of occurrence for a given SST distribution rather than the wind stress itself. This approach therefore allows for a nonlinear relationship between the SST and the wind signal of the WWBs. It is found that about half of the variance of the WWB parameters is explained by only two large-scale SST modes. The first mode represents a developed El Niño event, while the second mode represents the seasonal cycle. More specifically, the central longitude of WWBs, their longitudinal extent, and their probability seem to be determined to a significant degree by the ENSO-driven signal. The amplitude of the WWBs is found to be strongly influenced by the phase of the seasonal cycle. It is concluded that the WWBs, while partially stochastic, seem an inherent part of the large-scale deterministic ENSO dynamics. Implications for ENSO predictability and prediction are discussed.
Abstract
The correlation between parameters characterizing observed westerly wind bursts (WWBs) in the equatorial Pacific and the large-scale SST is analyzed using singular value decomposition. The WWB parameters include the amplitude, location, scale, and probability of occurrence for a given SST distribution rather than the wind stress itself. This approach therefore allows for a nonlinear relationship between the SST and the wind signal of the WWBs. It is found that about half of the variance of the WWB parameters is explained by only two large-scale SST modes. The first mode represents a developed El Niño event, while the second mode represents the seasonal cycle. More specifically, the central longitude of WWBs, their longitudinal extent, and their probability seem to be determined to a significant degree by the ENSO-driven signal. The amplitude of the WWBs is found to be strongly influenced by the phase of the seasonal cycle. It is concluded that the WWBs, while partially stochastic, seem an inherent part of the large-scale deterministic ENSO dynamics. Implications for ENSO predictability and prediction are discussed.
Abstract
The study examined global variability of air–sea sensible heat flux (SHF) from 1980 to 2009 and the large-scale atmospheric and ocean circulations that gave rise to this variability. The contribution of high-latitude wintertime SHF was identified, and the relative importance of the effect of the sea–air temperature difference versus the effect of wind on decadal SHF variability was analyzed using an empirical orthogonal function (EOF) approach. The study showed that global SHF anomalies are strongly modulated by SHF at high latitudes (poleward of 45°) during winter seasons. Decadal variability of global wintertime SHF can be reasonably represented by the sum of two leading EOF modes, namely, the boreal wintertime SHF in the northern oceans and the austral wintertime SHF in the southern oceans. The study also showed that global wintertime SHF is modulated by the prominent modes of the large-scale atmospheric circulation at high latitudes. The increase of global SHF in the 1990s is attributable to the strengthening of the Southern Hemisphere annular mode index, while the decrease of global SHF after 2000 is due primarily to the downward trend of the Arctic Oscillation index. This study identified the important effects of wind direction and speed on SHF variability. Changes in winds modify the sea–air temperature gradient by advecting cold and dry air from continents and by imposing changes in wind-driven oceanic processes that affect sea surface temperature (SST). The pattern of air temperature anomalies dominates over the pattern of SST anomalies and dictates the pattern of decadal SHF variability.
Abstract
The study examined global variability of air–sea sensible heat flux (SHF) from 1980 to 2009 and the large-scale atmospheric and ocean circulations that gave rise to this variability. The contribution of high-latitude wintertime SHF was identified, and the relative importance of the effect of the sea–air temperature difference versus the effect of wind on decadal SHF variability was analyzed using an empirical orthogonal function (EOF) approach. The study showed that global SHF anomalies are strongly modulated by SHF at high latitudes (poleward of 45°) during winter seasons. Decadal variability of global wintertime SHF can be reasonably represented by the sum of two leading EOF modes, namely, the boreal wintertime SHF in the northern oceans and the austral wintertime SHF in the southern oceans. The study also showed that global wintertime SHF is modulated by the prominent modes of the large-scale atmospheric circulation at high latitudes. The increase of global SHF in the 1990s is attributable to the strengthening of the Southern Hemisphere annular mode index, while the decrease of global SHF after 2000 is due primarily to the downward trend of the Arctic Oscillation index. This study identified the important effects of wind direction and speed on SHF variability. Changes in winds modify the sea–air temperature gradient by advecting cold and dry air from continents and by imposing changes in wind-driven oceanic processes that affect sea surface temperature (SST). The pattern of air temperature anomalies dominates over the pattern of SST anomalies and dictates the pattern of decadal SHF variability.
Abstract
An assessment is made of the mean and variability of the net air–sea heat flux, Q net, from four products (ECCO, OAFlux–CERES, ERA-Interim, and NCEP1) over the global ice-free ocean from January 2001 to December 2010. For the 10-yr “hiatus” period, all products agree on an overall net heat gain over the global ice-free ocean, but the magnitude varies from 1.7 to 9.5 W m−2. The differences among products are particularly large in the Southern Ocean, where they cannot even agree on whether the region gains or loses heat on the annual mean basis. Decadal trends of Q net differ significantly between products. ECCO and OAFlux–CERES show almost no trend, whereas ERA-Interim suggests a downward trend and NCEP1 shows an upward trend. Therefore, numerical simulations utilizing different surface flux forcing products will likely produce diverged trends of the ocean heat content during this period. The downward trend in ERA-Interim started from 2006, driven by a peculiar pattern change in the tropical regions. ECCO, which used ERA-Interim as initial surface forcings and is constrained by ocean dynamics and ocean observations, corrected the pattern. Among the four products, ECCO and OAFlux–CERES show great similarities in the examined spatial and temporal patterns. Given that the two estimates were obtained using different approaches and based on largely independent observations, these similarities are encouraging and instructive. It is more likely that the global net air–sea heat flux does not change much during the so-called hiatus period.
Abstract
An assessment is made of the mean and variability of the net air–sea heat flux, Q net, from four products (ECCO, OAFlux–CERES, ERA-Interim, and NCEP1) over the global ice-free ocean from January 2001 to December 2010. For the 10-yr “hiatus” period, all products agree on an overall net heat gain over the global ice-free ocean, but the magnitude varies from 1.7 to 9.5 W m−2. The differences among products are particularly large in the Southern Ocean, where they cannot even agree on whether the region gains or loses heat on the annual mean basis. Decadal trends of Q net differ significantly between products. ECCO and OAFlux–CERES show almost no trend, whereas ERA-Interim suggests a downward trend and NCEP1 shows an upward trend. Therefore, numerical simulations utilizing different surface flux forcing products will likely produce diverged trends of the ocean heat content during this period. The downward trend in ERA-Interim started from 2006, driven by a peculiar pattern change in the tropical regions. ECCO, which used ERA-Interim as initial surface forcings and is constrained by ocean dynamics and ocean observations, corrected the pattern. Among the four products, ECCO and OAFlux–CERES show great similarities in the examined spatial and temporal patterns. Given that the two estimates were obtained using different approaches and based on largely independent observations, these similarities are encouraging and instructive. It is more likely that the global net air–sea heat flux does not change much during the so-called hiatus period.
Abstract
The WKBJ method and a multiple-scale expansion technique are used to study equatorially trapped waves propagating on a zonally sloping themocline. Assuming that variations of the main thermocline depth (MTD) are slow (the change of the MTD over one wavelength is smaller than the wave amplitude), wave reflections can be neglected and the amplitudes of equatorially trapped waves can be derived by using the energy conservation law. It is found that the wavelengths and amplitudes of free waves are significantly modified by the MTD variations. While propagating eastward in an ocean basin (where the MTD is shallower), Kelvin waves shrink meridionally and zonally but their amplitudes increase to preserve wave energy; short Rossby waves behave in the opposite way. The wavelength of westward-propagating long Rossby waves becomes longer when they propagate into the deeper western ocean. The response of a Yanai wave to the changing thermocline depends on the sign of phase speed.
A simple numerical method is designed to verify the WKBJ results and also to study the cast of a relatively steep thermocline profile where the WKBJ method breaks down. Reflection of a Kelvin wave impinging on a thermocline front is also investigated in this work.
Abstract
The WKBJ method and a multiple-scale expansion technique are used to study equatorially trapped waves propagating on a zonally sloping themocline. Assuming that variations of the main thermocline depth (MTD) are slow (the change of the MTD over one wavelength is smaller than the wave amplitude), wave reflections can be neglected and the amplitudes of equatorially trapped waves can be derived by using the energy conservation law. It is found that the wavelengths and amplitudes of free waves are significantly modified by the MTD variations. While propagating eastward in an ocean basin (where the MTD is shallower), Kelvin waves shrink meridionally and zonally but their amplitudes increase to preserve wave energy; short Rossby waves behave in the opposite way. The wavelength of westward-propagating long Rossby waves becomes longer when they propagate into the deeper western ocean. The response of a Yanai wave to the changing thermocline depends on the sign of phase speed.
A simple numerical method is designed to verify the WKBJ results and also to study the cast of a relatively steep thermocline profile where the WKBJ method breaks down. Reflection of a Kelvin wave impinging on a thermocline front is also investigated in this work.
Abstract
Westerly wind bursts (WWBs) in the equatorial Pacific occur during the development of most El Niño events and are believed to be a major factor in ENSO’s dynamics. Because of their short time scale, WWBs are normally considered part of a stochastic forcing of ENSO, completely external to the interannual ENSO variability. Recent observational studies, however, suggest that the occurrence and characteristics of WWBs may depend to some extent on the state of ENSO components, implying that WWBs, which force ENSO, are modulated by ENSO itself.
Satellite and in situ observations are used here to show that WWBs are significantly more likely to occur when the warm pool is extended eastward. Based on these observations, WWBs are added to an intermediate complexity coupled ocean–atmosphere ENSO model. The representation of WWBs is idealized such that their occurrence is modulated by the warm pool extent. The resulting model run is compared with a run in which the WWBs are stochastically applied. The modulation of WWBs by ENSO results in an enhancement of the slow frequency component of the WWBs. This causes the amplitude of ENSO events forced by modulated WWBs to be twice as large as the amplitude of ENSO events forced by stochastic WWBs with the same amplitude and average frequency. Based on this result, it is suggested that the modulation of WWBs by the equatorial Pacific SST is a critical element of ENSO’s dynamics, and that WWBs should not be regarded as purely stochastic forcing. In the paradigm proposed here, WWBs are still an important aspect of ENSO’s dynamics, but they are treated as being partially stochastic and partially affected by the large-scale ENSO dynamics, rather than being completely external to ENSO.
It is further shown that WWB modulation by the large-scale equatorial SST field is roughly equivalent to an increase in the ocean–atmosphere coupling strength, making the coupled equatorial Pacific effectively self-sustained.
Abstract
Westerly wind bursts (WWBs) in the equatorial Pacific occur during the development of most El Niño events and are believed to be a major factor in ENSO’s dynamics. Because of their short time scale, WWBs are normally considered part of a stochastic forcing of ENSO, completely external to the interannual ENSO variability. Recent observational studies, however, suggest that the occurrence and characteristics of WWBs may depend to some extent on the state of ENSO components, implying that WWBs, which force ENSO, are modulated by ENSO itself.
Satellite and in situ observations are used here to show that WWBs are significantly more likely to occur when the warm pool is extended eastward. Based on these observations, WWBs are added to an intermediate complexity coupled ocean–atmosphere ENSO model. The representation of WWBs is idealized such that their occurrence is modulated by the warm pool extent. The resulting model run is compared with a run in which the WWBs are stochastically applied. The modulation of WWBs by ENSO results in an enhancement of the slow frequency component of the WWBs. This causes the amplitude of ENSO events forced by modulated WWBs to be twice as large as the amplitude of ENSO events forced by stochastic WWBs with the same amplitude and average frequency. Based on this result, it is suggested that the modulation of WWBs by the equatorial Pacific SST is a critical element of ENSO’s dynamics, and that WWBs should not be regarded as purely stochastic forcing. In the paradigm proposed here, WWBs are still an important aspect of ENSO’s dynamics, but they are treated as being partially stochastic and partially affected by the large-scale ENSO dynamics, rather than being completely external to ENSO.
It is further shown that WWB modulation by the large-scale equatorial SST field is roughly equivalent to an increase in the ocean–atmosphere coupling strength, making the coupled equatorial Pacific effectively self-sustained.
Abstract
The decadal to multidecadal mixed layer variability is investigated in a region south of the Kuroshio Extension (130°E–180°, 25°–35°N), an area where the North Pacific subtropical mode water forms, during 1948–2012. By analyzing the mixed layer heat budget with different observational and reanalysis data, here we show that the decadal to multidecadal variability of the mixed layer temperature and mixed layer depth is covaried with the Atlantic multidecadal oscillation (AMO), instead of the Pacific decadal oscillation (PDO). The mixed layer temperature has strong decadal to multidecadal variability, being warm before 1970 and after 1990 (AMO positive phase) and cold during 1970–90 (AMO negative phase), and so does the mixed layer depth. The dominant process for the mixed layer temperature decadal to multidecadal variability is the Ekman advection, which is controlled by the zonal wind changes related to the AMO. The net heat flux into the ocean surface Q net acts as a damping term and it is mainly from the effect of latent heat flux and partially from sensible heat flux. While the wind as well as mixed layer temperature decadal changes related to the PDO are weak in the western Pacific Ocean. Our finding proposes the possible influence of the AMO on the northwestern Pacific Ocean mixed layer variability, and could be a potential predictor for the decadal to multidecadal climate variability in the western Pacific Ocean.
Abstract
The decadal to multidecadal mixed layer variability is investigated in a region south of the Kuroshio Extension (130°E–180°, 25°–35°N), an area where the North Pacific subtropical mode water forms, during 1948–2012. By analyzing the mixed layer heat budget with different observational and reanalysis data, here we show that the decadal to multidecadal variability of the mixed layer temperature and mixed layer depth is covaried with the Atlantic multidecadal oscillation (AMO), instead of the Pacific decadal oscillation (PDO). The mixed layer temperature has strong decadal to multidecadal variability, being warm before 1970 and after 1990 (AMO positive phase) and cold during 1970–90 (AMO negative phase), and so does the mixed layer depth. The dominant process for the mixed layer temperature decadal to multidecadal variability is the Ekman advection, which is controlled by the zonal wind changes related to the AMO. The net heat flux into the ocean surface Q net acts as a damping term and it is mainly from the effect of latent heat flux and partially from sensible heat flux. While the wind as well as mixed layer temperature decadal changes related to the PDO are weak in the western Pacific Ocean. Our finding proposes the possible influence of the AMO on the northwestern Pacific Ocean mixed layer variability, and could be a potential predictor for the decadal to multidecadal climate variability in the western Pacific Ocean.
A 25-yr (1981–2005) time series of daily latent and sensible heat fluxes over the global ice-free oceans has been produced by synthesizing surface meteorology obtained from satellite remote sensing and atmospheric model reanalyses outputs. The project, named Objectively Analyzed Air–Sea Fluxes (OAFlux), was developed from an initial study of the Atlantic Ocean that demonstrated that such data synthesis improves daily flux estimates over the basin scale. This paper introduces the 25-yr heat flux analysis and documents variability of the global ocean heat flux fields on seasonal, interannual, decadal, and longer time scales suggested by the new dataset.
The study showed that, among all the climate signals investigated, the most striking is a long-term increase in latent heat flux that dominates the data record. The globally averaged latent heat flux increased by roughly 9 W m−2 between the low in 1981 and the peak in 2002, which amounted to about a 10% increase in the mean value over the 25-yr period. Positive linear trends appeared on a global scale, and were most significant over the tropical Indian and western Pacific warm pool and the boundary current regions. The increase in latent heat flux was in concert with the rise of sea surface temperature, suggesting a response of the atmosphere to oceanic forcing.
A 25-yr (1981–2005) time series of daily latent and sensible heat fluxes over the global ice-free oceans has been produced by synthesizing surface meteorology obtained from satellite remote sensing and atmospheric model reanalyses outputs. The project, named Objectively Analyzed Air–Sea Fluxes (OAFlux), was developed from an initial study of the Atlantic Ocean that demonstrated that such data synthesis improves daily flux estimates over the basin scale. This paper introduces the 25-yr heat flux analysis and documents variability of the global ocean heat flux fields on seasonal, interannual, decadal, and longer time scales suggested by the new dataset.
The study showed that, among all the climate signals investigated, the most striking is a long-term increase in latent heat flux that dominates the data record. The globally averaged latent heat flux increased by roughly 9 W m−2 between the low in 1981 and the peak in 2002, which amounted to about a 10% increase in the mean value over the 25-yr period. Positive linear trends appeared on a global scale, and were most significant over the tropical Indian and western Pacific warm pool and the boundary current regions. The increase in latent heat flux was in concert with the rise of sea surface temperature, suggesting a response of the atmosphere to oceanic forcing.
Abstract
A variational optimal control technique is used to assimilate both meteorological and oceanographic observations into an oceanic Ekman layer model. An identical twin experiment is discussed first in which the “observations” are created by the dynamic model. The field measurements from the LOTUS-3 (Long-Term Upper Ocean Study-3) buoy are then analysed. By fitting the model results to the data, the unknown boundary condition (the wind stress drag coefficient) and the unknown vertical eddy viscosity distribution are deduced simultaneously from the data, and an optimal estimate of the current field is obtained.
Though the model is simple, the results show that the variational assimilation technique is capable of extracting from the available observations a reasonable wind stress drag coefficient and vertical eddy viscosity distribution.
Abstract
A variational optimal control technique is used to assimilate both meteorological and oceanographic observations into an oceanic Ekman layer model. An identical twin experiment is discussed first in which the “observations” are created by the dynamic model. The field measurements from the LOTUS-3 (Long-Term Upper Ocean Study-3) buoy are then analysed. By fitting the model results to the data, the unknown boundary condition (the wind stress drag coefficient) and the unknown vertical eddy viscosity distribution are deduced simultaneously from the data, and an optimal estimate of the current field is obtained.
Though the model is simple, the results show that the variational assimilation technique is capable of extracting from the available observations a reasonable wind stress drag coefficient and vertical eddy viscosity distribution.