Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Louis St. Laurent x
  • Journal of Atmospheric and Oceanic Technology x
  • Refine by Access: All Content x
Clear All Modify Search
Laur Ferris
,
Donglai Gong
,
Sophia Merrifield
, and
Louis St. Laurent

Abstract

Finescale strain parameterization (FSP) of turbulent kinetic energy dissipation rate has become a widely used method for observing ocean mixing, solving a coverage problem where direct turbulence measurements are absent but CTD profiles are available. This method can offer significant value, but there are limitations in its broad application to the global ocean. FSP often fails to produce reliable results in frontal zones where temperature–salinity (T/S) intrusive features contaminate the CTD strain spectrum, as well as where the aspect ratio of the internal wave spectrum is known to vary greatly with depth, as frequently occurs in the Southern Ocean. In this study we use direct turbulence measurements from Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) and glider microstructure measurements from Autonomous Sampling of Southern Ocean Mixing (AUSSOM) to show that FSP can have large biases (compared to direct turbulence measurement) below the mixed layer when physics associated with T/S fronts are meaningfully present. We propose that the FSP methodology be modified to 1) include a density ratio (Rρ )-based data exclusion rule to avoid contamination by double diffusive instabilities in frontal zones such as the Antarctic Circumpolar Current, the Gulf Stream, and the Kuroshio, and 2) conduct (or leverage available) microstructure measurements of the depth-varying shear-to-strain ratio Rω (z) prior to performing FSP in each dynamically unique region of the global ocean.

Significance Statement

Internal waves travel through the ocean and collide, turbulently mixing the interior ocean and homogenizing its waters. In the absence of actual turbulence measurements, oceanographers count the ripples associated with these internal waves and use them estimate the amount of turbulence that will transpire from their collisions. In this paper we show that the ripples in temperature and salinity that naturally occur at sharp fronts masquerade as internal waves and trick oceanographers into thinking there is up to 100 000 000 times more turbulence than there actually is in these frontal regions.

Open access
Seth F. Zippel
,
J. Thomas Farrar
,
Christopher J. Zappa
,
Una Miller
,
Louis St. Laurent
,
Takashi Ijichi
,
Robert A. Weller
,
Leah McRaven
,
Sven Nylund
, and
Deborah Le Bel

Abstract

Upper-ocean turbulence is central to the exchanges of heat, momentum, and gases across the air–sea interface and therefore plays a large role in weather and climate. Current understanding of upper-ocean mixing is lacking, often leading models to misrepresent mixed layer depths and sea surface temperature. In part, progress has been limited by the difficulty of measuring turbulence from fixed moorings that can simultaneously measure surface fluxes and upper-ocean stratification over long time periods. Here we introduce a direct wavenumber method for measuring turbulent kinetic energy (TKE) dissipation rates ϵ from long-enduring moorings using pulse-coherent ADCPs. We discuss optimal programming of the ADCPs, a robust mechanical design for use on a mooring to maximize data return, and data processing techniques including phase-ambiguity unwrapping, spectral analysis, and a correction for instrument response. The method was used in the Salinity Processes Upper-Ocean Regional Study (SPURS) to collect two year-long datasets. We find that the mooring-derived TKE dissipation rates compare favorably to estimates made nearby from a microstructure shear probe mounted to a glider during its two separate 2-week missions for O(10−8) ≤ ϵO(10−5) m2 s−3. Periods of disagreement between turbulence estimates from the two platforms coincide with differences in vertical temperature profiles, which may indicate that barrier layers can substantially modulate upper-ocean turbulence over horizontal scales of 1–10 km. We also find that dissipation estimates from two different moorings at 12.5 and at 7 m are in agreement with the surface buoyancy flux during periods of strong nighttime convection, consistent with classic boundary layer theory.

Open access