Search Results

You are looking at 1 - 6 of 6 items for :

  • Author or Editor: M. D. King x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Peter Uhe
,
Dann Mitchell
,
Paul D. Bates
,
Myles R. Allen
,
Richard A. Betts
,
Chris Huntingford
,
Andrew D. King
,
Benjamin M. Sanderson
, and
Hideo Shiogama

Abstract

Precipitation events cause disruption around the world and will be altered by climate change. However, different climate modeling approaches can result in different future precipitation projections. The corresponding “method uncertainty” is rarely explicitly calculated in climate impact studies and major reports but can substantially change estimated precipitation changes. A comparison across five commonly used modeling activities shows that, for changes in mean precipitation, less than half of the regions analyzed had significant changes between the present climate and 1.5°C global warming for the majority of modeling activities. This increases to just over half of the regions for changes between present climate and 2°C global warming. There is much higher confidence in changes in maximum 1-day precipitation than in mean precipitation, indicating the robust influence of thermodynamics in the climate change effect on extremes. We also find that none of the modeling activities captures the full range of estimates from the other methods in all regions. Our results serve as an uncertainty map to help interpret which regions require a multimethod approach. Our analysis highlights the risk of overreliance on any single modeling activity and the need for confidence statements in major synthesis reports to reflect this method uncertainty. Considering multiple sources of climate projections should reduce the risks of policymakers being unprepared for impacts of warmer climates relative to using single-method projections to make decisions.

Full access
Andrew D. King
,
Reto Knutti
,
Peter Uhe
,
Daniel M. Mitchell
,
Sophie C. Lewis
,
Julie M. Arblaster
, and
Nicolas Freychet

Abstract

Given the Paris Agreement it is imperative there is greater understanding of the consequences of limiting global warming to the target 1.5° and 2°C levels above preindustrial conditions. It is challenging to quantify changes across a small increment of global warming, so a pattern-scaling approach may be considered. Here we investigate the validity of such an approach by comprehensively examining how well local temperatures and warming trends in a 1.5°C world predict local temperatures at global warming of 2°C. Ensembles of transient coupled climate simulations from multiple models under different scenarios were compared and individual model responses were analyzed. For many places, the multimodel forced response of seasonal-average temperatures is approximately linear with global warming between 1.5° and 2°C. However, individual model results vary and large contributions from nonlinear changes in unforced variability or the forced response cannot be ruled out. In some regions, such as East Asia, models simulate substantially greater warming than is expected from linear scaling. Examining East Asia during boreal summer, we find that increased warming in the simulated 2°C world relative to scaling up from 1.5°C is related to reduced anthropogenic aerosol emissions. Our findings suggest that, where forcings other than those due to greenhouse gas emissions change, the warming experienced in a 1.5°C world is a poor predictor for local climate at 2°C of global warming. In addition to the analysis of the linearity in the forced climate change signal, we find that natural variability remains a substantial contribution to uncertainty at these low-warming targets.

Full access
B. I. Moat
,
B. Sinha
,
D. I. Berry
,
S. S. Drijfhout
,
N. Fraser
,
L. Hermanson
,
D. C. Jones
,
S. A. Josey
,
B. King
,
C. Macintosh
,
A. Megann
,
M. Oltmanns
,
R. Sanders
, and
S. Williams

Abstract

We construct an upper ocean (0-1000m) North Atlantic heat budget (26°-67°N) for the period 1950-2020 using multiple observational datasets and an eddy-permitting global ocean model. On multidecadal timescales ocean heat transport convergence controls ocean heat content (OHC) tendency in most regions of the North Atlantic with little role for diffusive processes. In the subpolar North Atlantic (45°N-67°N) heat transport convergence is explained by geostrophic currents whereas ageostrophic currents make a significant contribution in the subtropics (26°N-45°N). The geostrophic contribution in all regions is dominated by anomalous advection across the time-mean temperature gradient although other processes make a significant contribution particularly in the subtropics. The timescale and spatial distribution of the anomalous geostrophic currents are consistent with a simple model of basin scale thermal Rossby waves propagating westwards/northwestwards in the subpolar gyre and multidecadal variations in regional OHC are explained by geostrophic currents periodically coming into alignment with the mean temperature gradient as the Rossby wave passes through. The global ocean model simulation shows that multidecadal variations in the Atlantic Meridional Overturning Circulation are synchronized with the ocean heat transport convergence consistent with modulation of the west-east pressure gradient by the propagating Rossby wave.

Open access
L. C. Shaffrey
,
I. Stevens
,
W. A. Norton
,
M. J. Roberts
,
P. L. Vidale
,
J. D. Harle
,
A. Jrrar
,
D. P. Stevens
,
M. J. Woodage
,
M. E. Demory
,
J. Donners
,
D. B. Clark
,
A. Clayton
,
J. W. Cole
,
S. S. Wilson
,
W. M. Connolley
,
T. M. Davies
,
A. M. Iwi
,
T. C. Johns
,
J. C. King
,
A. L. New
,
J. M. Slingo
,
A. Slingo
,
L. Steenman-Clark
, and
G. M. Martin

Abstract

This article describes the development and evaluation of the U.K.’s new High-Resolution Global Environmental Model (HiGEM), which is based on the latest climate configuration of the Met Office Unified Model, known as the Hadley Centre Global Environmental Model, version 1 (HadGEM1). In HiGEM, the horizontal resolution has been increased to 0.83° latitude × 1.25° longitude for the atmosphere, and 1/3° × 1/3° globally for the ocean. Multidecadal integrations of HiGEM, and the lower-resolution HadGEM, are used to explore the impact of resolution on the fidelity of climate simulations.

Generally, SST errors are reduced in HiGEM. Cold SST errors associated with the path of the North Atlantic drift improve, and warm SST errors are reduced in upwelling stratocumulus regions where the simulation of low-level cloud is better at higher resolution. The ocean model in HiGEM allows ocean eddies to be partially resolved, which dramatically improves the representation of sea surface height variability. In the Southern Ocean, most of the heat transports in HiGEM is achieved by resolved eddy motions, which replaces the parameterized eddy heat transport in the lower-resolution model. HiGEM is also able to more realistically simulate small-scale features in the wind stress curl around islands and oceanic SST fronts, which may have implications for oceanic upwelling and ocean biology.

Higher resolution in both the atmosphere and the ocean allows coupling to occur on small spatial scales. In particular, the small-scale interaction recently seen in satellite imagery between the atmosphere and tropical instability waves in the tropical Pacific Ocean is realistically captured in HiGEM. Tropical instability waves play a role in improving the simulation of the mean state of the tropical Pacific, which has important implications for climate variability. In particular, all aspects of the simulation of ENSO (spatial patterns, the time scales at which ENSO occurs, and global teleconnections) are much improved in HiGEM.

Full access
Jonathan D. Wille
,
Simon P. Alexander
,
Charles Amory
,
Rebecca Baiman
,
Léonard Barthélemy
,
Dana M. Bergstrom
,
Alexis Berne
,
Hanin Binder
,
Juliette Blanchet
,
Deniz Bozkurt
,
Thomas J. Bracegirdle
,
Mathieu Casado
,
Taejin Choi
,
Kyle R. Clem
,
Francis Codron
,
Rajashree Datta
,
Stefano Di Battista
,
Vincent Favier
,
Diana Francis
,
Alexander D. Fraser
,
Elise Fourré
,
René D. Garreaud
,
Christophe Genthon
,
Irina V. Gorodetskaya
,
Sergi González-Herrero
,
Victoria J. Heinrich
,
Guillaume Hubert
,
Hanna Joos
,
Seong-Joong Kim
,
John C. King
,
Christoph Kittel
,
Amaelle Landais
,
Matthew Lazzara
,
Gregory H. Leonard
,
Jan L. Lieser
,
Michelle Maclennan
,
David Mikolajczyk
,
Peter Neff
,
Inès Ollivier
,
Ghislain Picard
,
Benjamin Pohl
,
F. Martin Ralph
,
Penny Rowe
,
Elisabeth Schlosser
,
Christine A. Shields
,
Inga J. Smith
,
Michael Sprenger
,
Luke Trusel
,
Danielle Udy
,
Tessa Vance
,
Étienne Vignon
,
Catherine Walker
,
Nander Wever
, and
Xun Zou

Abstract

Between 15 and 19 March 2022, East Antarctica experienced an exceptional heat wave with widespread 30°–40°C temperature anomalies across the ice sheet. This record-shattering event saw numerous monthly temperature records being broken including a new all-time temperature record of −9.4°C on 18 March at Concordia Station despite March typically being a transition month to the Antarctic coreless winter. The driver for these temperature extremes was an intense atmospheric river advecting subtropical/midlatitude heat and moisture deep into the Antarctic interior. The scope of the temperature records spurred a large, diverse collaborative effort to study the heat wave’s meteorological drivers, impacts, and historical climate context. Here we focus on describing those temperature records along with the intricate meteorological drivers that led to the most intense atmospheric river observed over East Antarctica. These efforts describe the Rossby wave activity forced from intense tropical convection over the Indian Ocean. This led to an atmospheric river and warm conveyor belt intensification near the coastline, which reinforced atmospheric blocking deep into East Antarctica. The resulting moisture flux and upper-level warm-air advection eroded the typical surface temperature inversions over the ice sheet. At the peak of the heat wave, an area of 3.3 million km2 in East Antarctica exceeded previous March monthly temperature records. Despite a temperature anomaly return time of about 100 years, a closer recurrence of such an event is possible under future climate projections. In Part II we describe the various impacts this extreme event had on the East Antarctic cryosphere.

Significance Statement

In March 2022, a heat wave and atmospheric river caused some of the highest temperature anomalies ever observed globally and captured the attention of the Antarctic science community. Using our diverse collective expertise, we explored the causes of the event and have placed it within a historical climate context. One key takeaway is that Antarctic climate extremes are highly sensitive to perturbations in the midlatitudes and subtropics. This heat wave redefined our expectations of the Antarctic climate. Despite the rare chance of occurrence based on past climate, a future temperature extreme event of similar magnitude is possible, especially given anthropogenic climate change.

Open access
Jonathan D. Wille
,
Simon P. Alexander
,
Charles Amory
,
Rebecca Baiman
,
Léonard Barthélemy
,
Dana M. Bergstrom
,
Alexis Berne
,
Hanin Binder
,
Juliette Blanchet
,
Deniz Bozkurt
,
Thomas J. Bracegirdle
,
Mathieu Casado
,
Taejin Choi
,
Kyle R. Clem
,
Francis Codron
,
Rajashree Datta
,
Stefano Di Battista
,
Vincent Favier
,
Diana Francis
,
Alexander D. Fraser
,
Elise Fourré
,
René D. Garreaud
,
Christophe Genthon
,
Irina V. Gorodetskaya
,
Sergi González-Herrero
,
Victoria J. Heinrich
,
Guillaume Hubert
,
Hanna Joos
,
Seong-Joong Kim
,
John C. King
,
Christoph Kittel
,
Amaelle Landais
,
Matthew Lazzara
,
Gregory H. Leonard
,
Jan L. Lieser
,
Michelle Maclennan
,
David Mikolajczyk
,
Peter Neff
,
Inès Ollivier
,
Ghislain Picard
,
Benjamin Pohl
,
F. Martin Ralph
,
Penny Rowe
,
Elisabeth Schlosser
,
Christine A. Shields
,
Inga J. Smith
,
Michael Sprenger
,
Luke Trusel
,
Danielle Udy
,
Tessa Vance
,
Étienne Vignon
,
Catherine Walker
,
Nander Wever
, and
Xun Zou

Abstract

Between 15 and 19 March 2022, East Antarctica experienced an exceptional heat wave with widespread 30°–40°C temperature anomalies across the ice sheet. In Part I, we assessed the meteorological drivers that generated an intense atmospheric river (AR) that caused these record-shattering temperature anomalies. Here, we continue our large collaborative study by analyzing the widespread and diverse impacts driven by the AR landfall. These impacts included widespread rain and surface melt that was recorded along coastal areas, but this was outweighed by widespread high snowfall accumulations resulting in a largely positive surface mass balance contribution to the East Antarctic region. An analysis of the surface energy budget indicated that widespread downward longwave radiation anomalies caused by large cloud-liquid water contents along with some scattered solar radiation produced intense surface warming. Isotope measurements of the moisture were highly elevated, likely imprinting a strong signal for past climate reconstructions. The AR event attenuated cosmic ray measurements at Concordia, something previously never observed. Last, an extratropical cyclone west of the AR landfall likely triggered the final collapse of the critically unstable Conger Ice Shelf while further reducing an already record low sea ice extent.

Significance Statement

Using our diverse collective expertise, we explored the impacts from the March 2022 heat wave and atmospheric river across East Antarctica. One key takeaway is that the Antarctic cryosphere is highly sensitive to meteorological extremes originating from the midlatitudes and subtropics. Despite the large positive temperature anomalies driven from strong downward longwave radiation, this event led to huge amounts of snowfall across the Antarctic interior desert. The isotopes in this snow of warm airmass origin will likely be detectable in future ice cores and potentially distort past climate reconstructions. Even measurements of space activity were affected. Also, the swells generated from this storm helped to trigger the final collapse of an already critically unstable Conger Ice Shelf while further degrading sea ice coverage.

Open access