Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: M. D. King x
  • Weather and Forecasting x
  • Refine by Access: All Content x
Clear All Modify Search
Jessica R. King
,
Matthew D. Parker
,
Keith D. Sherburn
, and
Gary M. Lackmann

Abstract

Low-CAPE (i.e., CAPE ≤ 1000 J kg−1) severe thunderstorms are common in the greater southeastern United States (including the Tennessee and Ohio valleys). These events are often poorly forecasted, and the environments in which they occur may rapidly evolve. Real-data simulations of 11 low-CAPE severe events and 6 low-CAPE nonsevere events were performed at convection-allowing resolution. Some amount of surface-based destabilization occurred during all simulated events over the 3-h period prior to convection. Most simulated severe events experienced comparatively large destabilization relative to the nonsevere events as a result of surface warming, cooling aloft, and surface moistening. The release of potential instability by large-scale forcing for ascent likely influenced the cooling aloft in some cases. Surface warming was attributable primarily to warm advection and appeared to be an important discriminator between severe and nonsevere simulated events. Severe events were also found to have larger low-level wind shear than nonsevere events, particularly during nocturnal cases. Because of the rapid destabilization that occurred within 3 h in the simulated events, it is evident that 3–6-hourly model output may not be adequate for forecasting severe events in high-shear, low-CAPE environments. Monitoring of high-resolution model forecasts and surface observations may be necessary to identify a rapidly changing severe environment.

Full access
Keith D. Sherburn
,
Matthew D. Parker
,
Jessica R. King
, and
Gary M. Lackmann

Abstract

Severe convection occurring in environments characterized by large amounts of vertical wind shear and limited instability (high-shear, low-CAPE, or “HSLC,” environments) represents a considerable forecasting and nowcasting challenge. Of particular concern, NWS products associated with HSLC convection have low probability of detection and high false alarm rates. Past studies of HSLC convection have examined features associated with single cases; the present work, through composites of numerous cases, illustrates the attributes of “typical” HSLC severe and nonsevere events and identifies features that discriminate between the two. HSLC severe events across the eastern United States typically occur in moist boundary layers within the warm sector or along the cold front of a strong surface cyclone, while those in the western United States have drier boundary layers and more typically occur in the vicinity of a surface triple point or in an upslope regime. The mean HSLC severe event is shown to exhibit stronger forcing for ascent at all levels than its nonsevere counterpart. The majority of EF1 or greater HSLC tornadoes are shown to occur in the southeastern United States, so this region is subjected to the most detailed statistical analysis. Beyond the documented forecasting skill of environmental lapse rates and low-level shear vector magnitude, it is shown that a proxy for the release of potential instability further enhances skill when attempting to identify potentially severe HSLC events. This enhancement is likely associated with the local, in situ CAPE generation provided by this mechanism. Modified forecast parameters including this proxy show considerably improved spatial focusing of the forecast severe threat when compared to existing metrics.

Full access