Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: M. Fiorino x
  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: All Content x
Clear All Modify Search
Steven T. Fiorino, Robb M. Randall, Michelle F. Via, and Jarred L. Burley


This paper demonstrates the capability of the Laser Environmental Effects Definition and Reference (LEEDR) model to accurately characterize the meteorological parameters and radiative transfer effects of the atmospheric boundary layer with surface observations or climatological values of temperature, pressure, and humidity (“climatology”). The LEEDR model is a fast-calculating, first-principles, worldwide surface-to-100-km, ultraviolet-to-radio-frequency (UV to RF) wavelength, atmospheric characterization package. In general, LEEDR defines the well-mixed atmospheric boundary layer with a worldwide, probabilistic surface climatology that is based on season and time of day and, then, computes the radiative transfer and propagation effects from the vertical profile of meteorological variables. The LEEDR user can also directly input surface observations. This research compares the LEEDR vertical profiles created from input surface observations or numerical weather prediction (NWP) data with the LEEDR climatological profile for the same time of day and season. The different profiles are compared with truth radiosonde data, and the differences from truth are found to be smaller for profiles created from surface observations and NWP than for those made from climatological data for the same season and time. In addition, this research validates LEEDR’s elevated aerosol extinction profile vertical structure against observed lidar measurements and details the advantages of using NWP data for atmospheric profile development. The impacts of these differences are demonstrated with a potential tactical high-energy-laser engagement simulation.

Full access
Steven T. Fiorino, Robb M. Randall, Richard J. Bartell, Adam D. Downs, Peter C. Chu, and C. W. Fan


This study quantifies the potential impacts on ship-defense high-energy-laser (HEL) performance due to atmospheric effects in the marine boundary layer driven by recent observations and analysis of worldwide sea surface temperatures (SSTs). The atmospheric effects are defined using the worldwide probabilistic climatic database available in the High Energy Laser End-to-End Operational Simulation (HELEEOS) model, which includes an SST database for the period 1854–1997. A more recent worldwide sea surface temperature database was provided by the Naval Postgraduate School for the period 1990–2008. Mean differences and trends between the two SST databases are used to deduce possible climate change impacts on simulated maritime HEL engagements. The anticipated effects on HEL propagation performance are assessed at an operating wavelength of 1.0642 μm across the world’s oceans and mapped onto a 1° × 1° grid. The scenario evaluated is near surface and nearly horizontal over a range of 5000 m in which anticipated clear-air maritime aerosols occur. Summer and winter scenarios are considered. In addition to realistic vertical profiles of molecular and aerosol absorption and scattering, correlated optical turbulence profiles in probabilistic (percentile) format are used.

Full access