Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: M. Fiorino x
  • Monthly Weather Review x
  • Refine by Access: All Content x
Clear All Modify Search
Thomas M. Hamill, Jeffrey S. Whitaker, Daryl T. Kleist, Michael Fiorino, and Stanley G. Benjamin

Abstract

Experimental ensemble predictions of tropical cyclone (TC) tracks from the ensemble Kalman filter (EnKF) using the Global Forecast System (GFS) model were recently validated for the 2009 Northern Hemisphere hurricane season by Hamill et al. A similar suite of tests is described here for the 2010 season. Two major changes were made this season: 1) a reduction in the resolution of the GFS model, from 2009’s T384L64 (~31 km at 25°N) to 2010’s T254L64 (~47 km at 25°N), and some changes in model physics; and 2) the addition of a limited test of deterministic forecasts initialized from a hybrid three-dimensional variational data assimilation (3D-Var)/EnKF method.

The GFS/EnKF ensembles continued to produce reduced track errors relative to operational ensemble forecasts created by the National Centers for Environmental Prediction (NCEP), the Met Office (UKMO), and the Canadian Meteorological Centre (CMC). The GFS/EnKF was not uniformly as skillful as the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble prediction system. GFS/EnKF track forecasts had slightly higher error than ECMWF at longer leads, especially in the western North Pacific, and exhibited poorer calibration between spread and error than in 2009, perhaps in part because of lower model resolution. Deterministic forecasts from the hybrid were competitive with deterministic EnKF ensemble-mean forecasts and superior in track error to those initialized from the operational variational algorithm, the Gridpoint Statistical Interpolation (GSI). Pending further successful testing, the National Oceanic and Atmospheric Administration (NOAA) intends to implement the global hybrid system operationally for data assimilation.

Full access
Thomas M. Hamill, Jeffrey S. Whitaker, Michael Fiorino, and Stanley G. Benjamin

Abstract

Verification was performed on ensemble forecasts of 2009 Northern Hemisphere summer tropical cyclones (TCs) from two experimental global numerical weather prediction ensemble prediction systems (EPSs). The first model was a high-resolution version (T382L64) of the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS). The second model was a 30-km version of the experimental NOAA/Earth System Research Laboratory’s Flow-following finite-volume Icosahedral Model (FIM). Both models were initialized with the first 20 members of a 60-member ensemble Kalman filter (EnKF) using the T382L64 GFS. The GFS–EnKF assimilated the full observational data stream that was normally assimilated into the NCEP operational Global Statistical Interpolation (GSI) data assimilation, plus human-synthesized “observations” of tropical cyclone central pressure and position produced at the National Hurricane Center and the Joint Typhoon Warning Center. The forecasts from the two experimental ensembles were compared against four operational EPSs from the European Centre for Medium-Range Weather Forecasts (ECMWF), NCEP, the Canadian Meteorological Centre (CMC), and the Met Office (UKMO).

The errors of GFS–EnKF ensemble track forecasts were competitive with those from the ECMWF ensemble system, and the overall spread of the ensemble tracks was consistent in magnitude with the track error. Both experimental EPSs had much lower errors than the operational NCEP, UKMO, and CMC EPSs, but the FIM–EnKF tracks were somewhat less accurate than the GFS–EnKF. The ensemble forecasts were often stretched in particular directions, and not necessarily along or across track. The better-performing EPSs provided useful information on potential track error anisotropy. While the GFS–EnKF initialized relatively deep vortices by assimilating the TC central pressure estimate, the model storms filled during the subsequent 24 h. Other forecast models also systematically underestimated TC intensity (e.g., maximum forecast surface wind speed). The higher-resolution models generally had less bias.

Analyses were conducted to try to understand whether the additional central pressure observation, the EnKF, or the extra resolution was most responsible for the decrease in track error of the experimental Global Ensemble Forecast System (GEFS)–EnKF over the operational NCEP. The assimilation of the additional TC observations produced only a small change in deterministic track forecasts initialized with the GSI. The T382L64 GFS–EnKF ensemble was used to initialize a T126L28 ensemble forecast to facilitate a comparison with the operational NCEP system. The T126L28 GFS–EnKF EPS track forecasts were dramatically better than the NCEP operational, suggesting the positive impact of the EnKF, perhaps through improved steering flow.

Full access
Rainer Bleck, Jian-Wen Bao, Stanley G. Benjamin, John M. Brown, Michael Fiorino, Thomas B. Henderson, Jin-Luen Lee, Alexander E. MacDonald, Paul Madden, Jacques Middlecoff, James Rosinski, Tanya G. Smirnova, Shan Sun, and Ning Wang

Abstract

A hydrostatic global weather prediction model based on an icosahedral horizontal grid and a hybrid terrain-following/isentropic vertical coordinate is described. The model is an extension to three spatial dimensions of a previously developed, icosahedral, shallow-water model featuring user-selectable horizontal resolution and employing indirect addressing techniques. The vertical grid is adaptive to maximize the portion of the atmosphere mapped into the isentropic coordinate subdomain. The model, best described as a stacked shallow-water model, is being tested extensively on real-time medium-range forecasts to ready it for possible inclusion in operational multimodel ensembles for medium-range to seasonal prediction.

Full access