Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: M. Rajeevan x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
M. Rajeevan
and
J. Srinivasan

Abstract

Based on the data from Earth Radiation Budget Experiment (ERBE), many investigators have concluded that the net cloud radiative forcing at the top of the atmosphere is small in the deep convective region of the Tropics. This conclusion has been shown to be invalid for the Asian monsoon region during the period June–September. The ERBE data have been used to show that in the Asian monsoon region the net cloud radiative forcing at the top of the atmosphere is negative and its magnitude exceeds 30 W m−2 in 25% of the grids in this region. The large negative net cloud radiative forcing in the Asian monsoon region during June–September has been shown to be on account of the presence of large amount of high clouds and the large optical depth of these clouds. This combination of high cloud amount and high optical depth occurs in the Asian monsoon region only. In the other deep convective regions of the Tropics, high clouds with large optical depths are present, but they do not cover a large area.

Full access
A. K. Srivastava
,
M. Rajeevan
, and
S. R. Kshirsagar

Abstract

Southwest monsoon rainfall over India during July 2002 was the lowest since instrumental records of rainfall data have been available. The present study is an attempt to examine some of the probable causes for this unprecedented low rainfall during July. It is found that the strength of the intertropical convergence zone (ITCZ) over the north Indian Ocean and the pre-mei-yu front over the northwest Pacific Ocean during the month of May has significant positive correlation with the July rainfall over India, and it can be used as a precursor for predicting July rainfall over India. The activity of the ITCZ over the north Indian Ocean and pre-mei-yu front in May is an indicator of the strength of first monsoon intraseasonal oscillation (ISO). It was also found that the ITCZ over the north Indian Ocean and pre-mei-yu front were not active during May 2002, probably because of the weak ISO activity during the first half of the monsoon season.

Full access
S. Indira Rani
,
T. Arulalan
,
John P. George
,
E. N. Rajagopal
,
Richard Renshaw
,
Adam Maycock
,
Dale M. Barker
, and
M. Rajeevan

Abstract

A high-resolution regional reanalysis of the Indian Monsoon Data Assimilation and Analysis (IMDAA) project is made available to researchers for deeper understanding of the Indian monsoon and its variability. This 12-km resolution reanalysis covering the satellite era from 1979 to 2018 using a 4D-Var data assimilation method and the U.K. Met Office Unified Model is presently the highest resolution atmospheric reanalysis carried out for the Indian monsoon region. Conventional and satellite observations from different sources are used, including Indian surface and upper air observations, of which some had not been used in any previous reanalyses. Various aspects of this reanalysis, including quality control and bias correction of observations, data assimilation system, land surface analysis, and verification of reanalysis products, are presented in this paper. Representation of important weather phenomena of each season over India in the IMDAA reanalysis verifies reasonably well against India Meteorological Department (IMD) observations and compares closely with ERA5. Salient features of the Indian summer monsoon are found to be well represented in the IMDAA reanalysis. Characteristics of major semipermanent summer monsoon features (e.g., low-level jet and tropical easterly jet) in IMDAA reanalysis are consistent with ERA5. The IMDAA reanalysis has captured the mean, interannual, and intraseasonal variability of summer monsoon rainfall fairly well. IMDAA produces a slightly cooler winter and a hotter summer than the observations; the reverse is true for ERA5. IMDAA captured the fine-scale features associated with a notable heavy rainfall episode over complex terrain. In this study, the fine grid spacing nature of IMDAA is compromised due to the lack of comparable resolution observations for verification.

Open access
Susmitha Joseph
,
A. K. Sahai
,
S. Abhilash
,
R. Chattopadhyay
,
N. Borah
,
B. E. Mapes
,
M. Rajeevan
, and
A. Kumar

Abstract

This study reports an objective criterion for the real-time extended-range prediction of monsoon onset over Kerala (MOK), using circulation as well as rainfall information from the 16 May initial conditions of the Grand Ensemble Prediction System based on the coupled model CFSv2. Three indices are defined, one from rainfall measured over Kerala and the others based on the strength and depth of the low-level westerly jet over the Arabian Sea. While formulating the criterion, the persistence of both rainfall and low-level wind after the MOK date has been considered to avoid the occurrence of “bogus onsets” that are unrelated to the large-scale monsoon system. It is found that the predicted MOK date matches well with the MOK date declared by the India Meteorological Department, the authorized principal weather forecasting agency under the government of India, for the period 2001–14. The proposed criterion successfully avoids predicting bogus onsets, which is a major challenge in the prediction of MOK. Furthermore, the evolution of various model-predicted large-scale and local meteorological parameters corresponding to the predicted MOK date is in good agreement with that of the observation, suggesting the robustness of the devised criterion and the suitability of CFSv2 model for MOK prediction. However, it should be noted that the criterion proposed in the present study can be used only in the dynamical prediction framework, as it necessitates input data on the future evolution of rainfall and low-level wind.

Full access