Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: M. Rajeevan x
  • Monthly Weather Review x
  • Refine by Access: All Content x
Clear All Modify Search
T. N. Krishnamurti
,
A. K. Mishra
,
A. Chakraborty
, and
M. Rajeevan

Abstract

The availability of daily observed rainfall estimates at a resolution of 0.5° × 0.5° latitude–longitude from a collection of over 2100 rain gauge sites over India provided the possibility for carrying out 5-day precipitation forecasts using a downscaling and a multimodel superensemble methodology. This paper addresses the forecast performances and regional distribution of predicted monsoon rains from the downscaling and from the addition of a multimodel superensemble. The extent of rainfall prediction improvements that arise above those of a current suite of operational models are discussed. The design of two algorithms one for downscaling and the other for the construction of multimodel superensembles are both based on the principle of least squares minimization of errors. That combination is shown to provide a robust forecast product through day 5 of the forecast for regional rains over the Indian monsoon region. The equitable threat scores from the downscaled superensemble over India well exceed those noted from the conventional superensemble and member models at current operational large-scale resolution.

Full access
V. V. M. Jagannadha Rao
,
M. Venkat Ratnam
,
Y. Durga Santhi
,
M. Roja Raman
,
M. Rajeevan
, and
S. Vijaya Bhaskara Rao

Abstract

Global positioning system (GPS) radio occultation (RO) data available during 2001–10 have been used to examine the variations in the refractivity during the onset of Indian summer monsoon (ISM) over the east Arabian Sea (5°–15°N, 65°–75°E). An enhancement of 5–10 N-units in the refractivity is observed around 4.8 km (~600 hPa) a few days (9.23 ± 3.6 days) before onset of the monsoon over Kerala, India. This is attributed to moisture buildup over the Arabian Sea during the monsoon onset phase. A sudden increase (1.5–2 K) in mean upper-tropospheric temperature at the time of onset and during the active phase of the monsoon is attributed to convective activity and the release of latent heat. On the day of monsoon onset over Kerala, an appreciable dip in the refractivity is observed that persisted for 1–3 days followed by an enhancement in refractivity with the active phase of the monsoon. An arbitrary value of 128 N-units difference between 4.8 km (~600 hPa) and 16 km (~100 hPa) coupled with a dip in refractivity on the day of monsoon arrival might give an indication of clear transition of atmospheric conditions and the detection of monsoon onset. Further, a good relation is also found between the activity of monsoon and variability in the refractivity.

Full access