Search Results
You are looking at 1 - 3 of 3 items for :
- Author or Editor: M. Rajeevan x
- Weather and Forecasting x
- Refine by Access: All Content x
Abstract
The evaluation and usefulness of lightning prediction for the Indian subcontinent are demonstrated. Implementation of the lightning parameterizations based on storm parameters, in the Weather Research and Forecasting (WRF) Model, with different microphysics schemes are carried out. With the availability of observed lightning measurements over Maharashtra from the lightning detection network (LDN), lightning cases have been identified during the pre-monsoon season of 2016–18. Lightning parameterization based on cloud top height defined by a reflectivity threshold factor of 20 dBZ is chosen. Initial analysis is carried out for 16 lightning events with four microphysical schemes for the usefulness in lightning prediction. Objective analysis is carried out and quantitative model performance (skill scores) is assessed based on observed data. The skills are evaluated for 10- and 50-km2 boxes from the 1-km domain. There is good POD of 0.86, 0.82, 0.85, and 0.84, and false alarm ratio (FAR) of 0.28, 0.25, 0.29, and 0.26 from WSM6, Thompson, Morrison, and WDM6, respectively. There is an overestimation in lightning flash with a spatial and temporal shift. The fractional skill score is evaluated as a function of spatial scale with neighborhoods from 25 to 250 km. These high skill scores and high degree of correlation between observations and model simulation gives us confidence to use the system for real-time operational forecast over India. The skill for 2019 and 2020 pre-monsoon are calculated to address the predictability of operational lightning prediction over India.
Significance Statement
A high-resolution model, namely, the Weather Research and Forecasting (WRF) Model, with multiple microphysics parameterization schemes and lightning parameterization is used here. The objective analysis is carried out for the lightning cases over India and the quantitative performance is assessed. The results highlight that there is fairly good probability of detection (POD) of 0.86, 0.82, 0.85, and 0.84 and false alarm ratio (FAR) of 0.28, 0.25, 0.29, and 0.26 from four different microphysical schemes (WSM6, Thompson, Morrison, and WDM6, respectively). These high skill scores and high degree of correlation between observations and model simulation gives us confidence to use the system for real-time operational forecast. The validation of lightning forecast system deployed over India for five pre-monsoon months in real time is carried out, which gives POD of 0.90, FAR of 0.64, hit rate of 0.57, and POFD of 0.50 for the whole Indian region.
Abstract
The evaluation and usefulness of lightning prediction for the Indian subcontinent are demonstrated. Implementation of the lightning parameterizations based on storm parameters, in the Weather Research and Forecasting (WRF) Model, with different microphysics schemes are carried out. With the availability of observed lightning measurements over Maharashtra from the lightning detection network (LDN), lightning cases have been identified during the pre-monsoon season of 2016–18. Lightning parameterization based on cloud top height defined by a reflectivity threshold factor of 20 dBZ is chosen. Initial analysis is carried out for 16 lightning events with four microphysical schemes for the usefulness in lightning prediction. Objective analysis is carried out and quantitative model performance (skill scores) is assessed based on observed data. The skills are evaluated for 10- and 50-km2 boxes from the 1-km domain. There is good POD of 0.86, 0.82, 0.85, and 0.84, and false alarm ratio (FAR) of 0.28, 0.25, 0.29, and 0.26 from WSM6, Thompson, Morrison, and WDM6, respectively. There is an overestimation in lightning flash with a spatial and temporal shift. The fractional skill score is evaluated as a function of spatial scale with neighborhoods from 25 to 250 km. These high skill scores and high degree of correlation between observations and model simulation gives us confidence to use the system for real-time operational forecast over India. The skill for 2019 and 2020 pre-monsoon are calculated to address the predictability of operational lightning prediction over India.
Significance Statement
A high-resolution model, namely, the Weather Research and Forecasting (WRF) Model, with multiple microphysics parameterization schemes and lightning parameterization is used here. The objective analysis is carried out for the lightning cases over India and the quantitative performance is assessed. The results highlight that there is fairly good probability of detection (POD) of 0.86, 0.82, 0.85, and 0.84 and false alarm ratio (FAR) of 0.28, 0.25, 0.29, and 0.26 from four different microphysical schemes (WSM6, Thompson, Morrison, and WDM6, respectively). These high skill scores and high degree of correlation between observations and model simulation gives us confidence to use the system for real-time operational forecast. The validation of lightning forecast system deployed over India for five pre-monsoon months in real time is carried out, which gives POD of 0.90, FAR of 0.64, hit rate of 0.57, and POFD of 0.50 for the whole Indian region.
Abstract
A Winter Fog Experiment (WiFEX) was conducted to study the genesis of fog formation between winters 2016–17 and 2017–18 at Indira Gandhi International Airport (IGIA), Delhi, India. To support the WiFEX field campaign, the Weather Research and Forecasting (WRF) Model was used to produce real-time forecasts at 2-km horizontal grid spacing. This paper summarizes the performance of the model forecasts for 43 very dense fog episodes (visibility < 200 m) and preliminary evaluation of the model against the observations. Similarly, near-surface liquid water content (LWC) from models and continuous visibility observations are used as a metric for model evaluation. Results show that the skill score is relatively promising for the hit rate with a value of 0.78, whereas the false alarm rate (0.19) and missing rate (0.32) are quite low. This indicates that the model has reasonable predictive accuracy, and the performance of the real-time forecast is better for both dense fog events and no-fog events. For success cases, the model accurately captured the near-surface meteorological conditions, particularly the low-level moisture, wind fields, and temperature inversion. In contrast, for failed cases, the WRF Model shows large error in near-surface relative humidity and temperature compared to the observations, although it captures temperature inversions reasonably well. Our results also suggest that the model is able to capture the variability in fog onset for consecutive fog events. Errors in near-surface variables during failed cases are found to be affected by the errors in the initial conditions taken from the Indian Institute of Tropical Meteorology Global Forecasting System (IITM-GFS) spectral model forecast. Further evaluation of the operational forecasts for dense fog cases indicates that the error in predicting fog onset stage is relatively large (mean error of 4 h) compared to the dissipation stage.
Abstract
A Winter Fog Experiment (WiFEX) was conducted to study the genesis of fog formation between winters 2016–17 and 2017–18 at Indira Gandhi International Airport (IGIA), Delhi, India. To support the WiFEX field campaign, the Weather Research and Forecasting (WRF) Model was used to produce real-time forecasts at 2-km horizontal grid spacing. This paper summarizes the performance of the model forecasts for 43 very dense fog episodes (visibility < 200 m) and preliminary evaluation of the model against the observations. Similarly, near-surface liquid water content (LWC) from models and continuous visibility observations are used as a metric for model evaluation. Results show that the skill score is relatively promising for the hit rate with a value of 0.78, whereas the false alarm rate (0.19) and missing rate (0.32) are quite low. This indicates that the model has reasonable predictive accuracy, and the performance of the real-time forecast is better for both dense fog events and no-fog events. For success cases, the model accurately captured the near-surface meteorological conditions, particularly the low-level moisture, wind fields, and temperature inversion. In contrast, for failed cases, the WRF Model shows large error in near-surface relative humidity and temperature compared to the observations, although it captures temperature inversions reasonably well. Our results also suggest that the model is able to capture the variability in fog onset for consecutive fog events. Errors in near-surface variables during failed cases are found to be affected by the errors in the initial conditions taken from the Indian Institute of Tropical Meteorology Global Forecasting System (IITM-GFS) spectral model forecast. Further evaluation of the operational forecasts for dense fog cases indicates that the error in predicting fog onset stage is relatively large (mean error of 4 h) compared to the dissipation stage.
Abstract
During August 2018 and 2019 the southern state of India, Kerala, received unprecedented heavy rainfall, which led to widespread flooding. We aim to characterize the convective nature of these events and the large-scale atmospheric forcing, while exploring their predictability by three state-of-the-art global prediction systems: the National Centers for Environmental Prediction (NCEP)-based India Meteorological Department (IMD) operational Global Forecast System (GFS), the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS), and the Unified Model–based NCUM being run at the National Centre for Medium Range Weather Forecasting (NCMRWF). Satellite, radar, and lightning observations suggest that these rain events were dominated by cumulus congestus and shallow convection with strong zonal flow leading to orographically enhanced rainfall over the Ghats mountain range; sporadic deep convection was also present during the 2019 event. A moisture budget analyses using the fifth major global reanalysis produced by ECMWF (ERA5) and forecast output revealed significantly increased moisture convergence below 800 hPa during the main rain events compared to August climatology. The total column-integrated precipitable water tendency, however, is found to be small throughout the month of August, indicating a balance between moisture convergence and drying by precipitation. By applying a Rossby wave filter to the rainfall anomalies it is shown that the large-scale moisture convergence is associated with westward-propagating barotropic Rossby waves over Kerala, leading to increased predictability of these events, especially for 2019. Evaluation of the deterministic and ensemble rainfall predictions revealed systematic rainfall differences over the Ghats mountains and the coastline. The ensemble predictions were more skillful than the deterministic forecasts, as they were able to predict rainfall anomalies (greater than three standard deviations from climatology) beyond day 5 for August 2019 and up to day 3 for 2018.
Abstract
During August 2018 and 2019 the southern state of India, Kerala, received unprecedented heavy rainfall, which led to widespread flooding. We aim to characterize the convective nature of these events and the large-scale atmospheric forcing, while exploring their predictability by three state-of-the-art global prediction systems: the National Centers for Environmental Prediction (NCEP)-based India Meteorological Department (IMD) operational Global Forecast System (GFS), the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS), and the Unified Model–based NCUM being run at the National Centre for Medium Range Weather Forecasting (NCMRWF). Satellite, radar, and lightning observations suggest that these rain events were dominated by cumulus congestus and shallow convection with strong zonal flow leading to orographically enhanced rainfall over the Ghats mountain range; sporadic deep convection was also present during the 2019 event. A moisture budget analyses using the fifth major global reanalysis produced by ECMWF (ERA5) and forecast output revealed significantly increased moisture convergence below 800 hPa during the main rain events compared to August climatology. The total column-integrated precipitable water tendency, however, is found to be small throughout the month of August, indicating a balance between moisture convergence and drying by precipitation. By applying a Rossby wave filter to the rainfall anomalies it is shown that the large-scale moisture convergence is associated with westward-propagating barotropic Rossby waves over Kerala, leading to increased predictability of these events, especially for 2019. Evaluation of the deterministic and ensemble rainfall predictions revealed systematic rainfall differences over the Ghats mountains and the coastline. The ensemble predictions were more skillful than the deterministic forecasts, as they were able to predict rainfall anomalies (greater than three standard deviations from climatology) beyond day 5 for August 2019 and up to day 3 for 2018.