Search Results
You are looking at 1 - 1 of 1 items for :
- Author or Editor: Marilé Colón Robles x
- Journal of the Atmospheric Sciences x
- Refine by Access: All Content x
Abstract
This paper examines the effect of trade wind cumulus clouds on aerosol properties in the near-cloud environment using data from the Rain in Cumulus over the Ocean (RICO) campaign. Aerosol size distributions, particle concentrations, and optical properties are examined as a function of altitude and distance from cloud, at ambient relative humidity (RH) and adjusted to a constant RH to isolate effects of humidification from other processes.
The cloud humidity halo extended about 1500–2000 m from the cloud edge, with no clear altitude dependence on horizontal extent over an altitude range of 600–1700 m. The combined effects of vertical transport of aerosol by clouds and cloud processing contributed to the modification of aerosol size distributions within the clouds' humidity halos, particularly close to the cloud boundaries. Backscatter at 532 nm, calculated from the aerosol properties, exhibited no distinguishable trend with altitude within 400 m of cloud edges, increased toward lower altitudes beyond 400 m, and decreased away from cloud boundaries at all altitudes. The mean aerosol diameter was found to rapidly decline from 0.8 to 0.4 μm from near the cloud boundary to the boundary of the humidity halo. Aerosol optical depth at 532 nm within the layer between 600 and 1700 m increased near exponentially from 0.02 to 0.2 toward the cloud boundaries within the humidity halo. These trends agreed qualitatively with past space-based lidar measurements of trade wind cloud margins, although quantitative differences were noted that likely arose from different sampling strategies and other factors.
Abstract
This paper examines the effect of trade wind cumulus clouds on aerosol properties in the near-cloud environment using data from the Rain in Cumulus over the Ocean (RICO) campaign. Aerosol size distributions, particle concentrations, and optical properties are examined as a function of altitude and distance from cloud, at ambient relative humidity (RH) and adjusted to a constant RH to isolate effects of humidification from other processes.
The cloud humidity halo extended about 1500–2000 m from the cloud edge, with no clear altitude dependence on horizontal extent over an altitude range of 600–1700 m. The combined effects of vertical transport of aerosol by clouds and cloud processing contributed to the modification of aerosol size distributions within the clouds' humidity halos, particularly close to the cloud boundaries. Backscatter at 532 nm, calculated from the aerosol properties, exhibited no distinguishable trend with altitude within 400 m of cloud edges, increased toward lower altitudes beyond 400 m, and decreased away from cloud boundaries at all altitudes. The mean aerosol diameter was found to rapidly decline from 0.8 to 0.4 μm from near the cloud boundary to the boundary of the humidity halo. Aerosol optical depth at 532 nm within the layer between 600 and 1700 m increased near exponentially from 0.02 to 0.2 toward the cloud boundaries within the humidity halo. These trends agreed qualitatively with past space-based lidar measurements of trade wind cloud margins, although quantitative differences were noted that likely arose from different sampling strategies and other factors.