Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Marion Maturilli x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Manfred Wendisch
,
Andreas Macke
,
André Ehrlich
,
Christof Lüpkes
,
Mario Mech
,
Dmitry Chechin
,
Klaus Dethloff
,
Carola Barrientos Velasco
,
Heiko Bozem
,
Marlen Brückner
,
Hans-Christian Clemen
,
Susanne Crewell
,
Tobias Donth
,
Regis Dupuy
,
Kerstin Ebell
,
Ulrike Egerer
,
Ronny Engelmann
,
Christa Engler
,
Oliver Eppers
,
Martin Gehrmann
,
Xianda Gong
,
Matthias Gottschalk
,
Christophe Gourbeyre
,
Hannes Griesche
,
Jörg Hartmann
,
Markus Hartmann
,
Bernd Heinold
,
Andreas Herber
,
Hartmut Herrmann
,
Georg Heygster
,
Peter Hoor
,
Soheila Jafariserajehlou
,
Evelyn Jäkel
,
Emma Järvinen
,
Olivier Jourdan
,
Udo Kästner
,
Simonas Kecorius
,
Erlend M. Knudsen
,
Franziska Köllner
,
Jan Kretzschmar
,
Luca Lelli
,
Delphine Leroy
,
Marion Maturilli
,
Linlu Mei
,
Stephan Mertes
,
Guillaume Mioche
,
Roland Neuber
,
Marcel Nicolaus
,
Tatiana Nomokonova
,
Justus Notholt
,
Mathias Palm
,
Manuela van Pinxteren
,
Johannes Quaas
,
Philipp Richter
,
Elena Ruiz-Donoso
,
Michael Schäfer
,
Katja Schmieder
,
Martin Schnaiter
,
Johannes Schneider
,
Alfons Schwarzenböck
,
Patric Seifert
,
Matthew D. Shupe
,
Holger Siebert
,
Gunnar Spreen
,
Johannes Stapf
,
Frank Stratmann
,
Teresa Vogl
,
André Welti
,
Heike Wex
,
Alfred Wiedensohler
,
Marco Zanatta
, and
Sebastian Zeppenfeld

Abstract

Clouds play an important role in Arctic amplification. This term represents the recently observed enhanced warming of the Arctic relative to the global increase of near-surface air temperature. However, there are still important knowledge gaps regarding the interplay between Arctic clouds and aerosol particles, and surface properties, as well as turbulent and radiative fluxes that inhibit accurate model simulations of clouds in the Arctic climate system. In an attempt to resolve this so-called Arctic cloud puzzle, two comprehensive and closely coordinated field studies were conducted: the Arctic Cloud Observations Using Airborne Measurements during Polar Day (ACLOUD) aircraft campaign and the Physical Feedbacks of Arctic Boundary Layer, Sea Ice, Cloud and Aerosol (PASCAL) ice breaker expedition. Both observational studies were performed in the framework of the German Arctic Amplification: Climate Relevant Atmospheric and Surface Processes, and Feedback Mechanisms (AC) 3 project. They took place in the vicinity of Svalbard, Norway, in May and June 2017. ACLOUD and PASCAL explored four pieces of the Arctic cloud puzzle: cloud properties, aerosol impact on clouds, atmospheric radiation, and turbulent dynamical processes. The two instrumented Polar 5 and Polar 6 aircraft; the icebreaker Research Vessel (R/V) Polarstern; an ice floe camp including an instrumented tethered balloon; and the permanent ground-based measurement station at Ny-Ålesund, Svalbard, were employed to observe Arctic low- and mid-level mixed-phase clouds and to investigate related atmospheric and surface processes. The Polar 5 aircraft served as a remote sensing observatory examining the clouds from above by downward-looking sensors; the Polar 6 aircraft operated as a flying in situ measurement laboratory sampling inside and below the clouds. Most of the collocated Polar 5/6 flights were conducted either above the R/V Polarstern or over the Ny-Ålesund station, both of which monitored the clouds from below using similar but upward-looking remote sensing techniques as the Polar 5 aircraft. Several of the flights were carried out underneath collocated satellite tracks. The paper motivates the scientific objectives of the ACLOUD/PASCAL observations and describes the measured quantities, retrieved parameters, and the applied complementary instrumentation. Furthermore, it discusses selected measurement results and poses critical research questions to be answered in future papers analyzing the data from the two field campaigns.

Open access
Taneil Uttal
,
Sandra Starkweather
,
James R. Drummond
,
Timo Vihma
,
Alexander P. Makshtas
,
Lisa S. Darby
,
John F. Burkhart
,
Christopher J. Cox
,
Lauren N. Schmeisser
,
Thomas Haiden
,
Marion Maturilli
,
Matthew D. Shupe
,
Gijs De Boer
,
Auromeet Saha
,
Andrey A. Grachev
,
Sara M. Crepinsek
,
Lori Bruhwiler
,
Barry Goodison
,
Bruce McArthur
,
Von P. Walden
,
Edward J. Dlugokencky
,
P. Ola G. Persson
,
Glen Lesins
,
Tuomas Laurila
,
John A. Ogren
,
Robert Stone
,
Charles N. Long
,
Sangeeta Sharma
,
Andreas Massling
,
David D. Turner
,
Diane M. Stanitski
,
Eija Asmi
,
Mika Aurela
,
Henrik Skov
,
Konstantinos Eleftheriadis
,
Aki Virkkula
,
Andrew Platt
,
Eirik J. Førland
,
Yoshihiro Iijima
,
Ingeborg E. Nielsen
,
Michael H. Bergin
,
Lauren Candlish
,
Nikita S. Zimov
,
Sergey A. Zimov
,
Norman T. O’Neill
,
Pierre F. Fogal
,
Rigel Kivi
,
Elena A. Konopleva-Akish
,
Johannes Verlinde
,
Vasily Y. Kustov
,
Brian Vasel
,
Viktor M. Ivakhov
,
Yrjö Viisanen
, and
Janet M. Intrieri

Abstract

International Arctic Systems for Observing the Atmosphere (IASOA) activities and partnerships were initiated as a part of the 2007–09 International Polar Year (IPY) and are expected to continue for many decades as a legacy program. The IASOA focus is on coordinating intensive measurements of the Arctic atmosphere collected in the United States, Canada, Russia, Norway, Finland, and Greenland to create synthesis science that leads to an understanding of why and not just how the Arctic atmosphere is evolving. The IASOA premise is that there are limitations with Arctic modeling and satellite observations that can only be addressed with boots-on-the-ground, in situ observations and that the potential of combining individual station and network measurements into an integrated observing system is tremendous. The IASOA vision is that by further integrating with other network observing programs focusing on hydrology, glaciology, oceanography, terrestrial, and biological systems it will be possible to understand the mechanisms of the entire Arctic system, perhaps well enough for humans to mitigate undesirable variations and adapt to inevitable change.

Full access