Search Results

You are looking at 1 - 10 of 10 items for :

  • Author or Editor: Mark A. Merrifield x
  • Refine by Access: All Content x
Clear All Modify Search
Mark A. Merrifield

Abstract

Pacific Ocean sea surface height trends from satellite altimeter observations for 1993–2009 are examined in the context of longer tide gauge records and wind stress patterns. The dominant regional trends are high rates in the western tropical Pacific and minimal to negative rates in the eastern Pacific, particularly off North America. Interannual sea level variations associated with El Niño–Southern Oscillation events do not account for these trends. In the western tropical Pacific, tide gauge records indicate that the recent high rates represent a significant trend increase in the early 1990s relative to the preceding 40 years. This sea level trend shift in the western Pacific corresponds to an intensification of the easterly trade winds across the tropical Pacific. The wind change appears to be distinct from climate variations centered in the North Pacific, such as the Pacific decadal oscillation. In the eastern Pacific, tide gauge records exhibit higher-amplitude decadal fluctuations than in the western tropical Pacific, and the recent negative sea level trends are indistinguishable from these fluctuations. The shifts in trade wind strength and western Pacific sea level rate resemble changes in dominant global modes of outgoing longwave radiation and sea surface temperature. It is speculated that the western Pacific sea level response indicates a general strengthening of the atmospheric circulation over the tropical Pacific since the early 1990s that has developed in concert with recent warming trends.

Full access
John F. Middleton
and
Mark A. Merrifield

Abstract

The scattering of coastal-trapped waves (CTWs) by a region of irregular shelf bathymetry is determined from a circulation integral of the depth-integrated momentum equations. For relatively weak stratification the conservation of geostrophic mass flux along isobaths is used to show that bottom pressure of the transmitted waves is equal to bottom pressure p b of the incident waves, when mapped along constant depth contours, plus corrections for the effects of frictional spindown and the rate of change of relative vorticity. These corrections result from changes in the incident wave alongisobath velocity, which can be amplified by the convergence of isobaths between the incident and transmitted regions. For the case of the Labrador shelf, the convergence of isobaths south of the (incident) Hudson Strait region leads to a tenfold increase in the production of relative vorticity and in the correction for pressure for a mode 1 incident wave. This leading order increase in vorticity production violates the assumption of constant geostrophic mass flux and implies that the frictional correction, while small, is invalid. However, the transmitted mode 1 and 2 amplitudes determined are insensitive to these corrections and, in agreement with observations, are of similar magnitude and about 180° out of phase.

Full access
T. M. Shaun Johnston
and
Mark A. Merrifield

Abstract

A network of island tide gauges is used to estimate interannual geostrophic current anomalies (GCAs) in the western Pacific from 1975 to 1997. The focus of this study is the zonal component of the current averaged between 160°E and 180° and 2° to 7° north and south of the equator in the mean flow regions associated with the North Equatorial Countercurrent (NECC) and the South Equatorial Current (SEC), respectively. The tide gauge GCA estimates agree closely with similarly derived currents from TOPEX/Poseidon sea level anomalies. The GCAs in the western Pacific relate to a basin-scale adjustment associated with the El Niño–Southern Oscillation, characterized here using empirical orthogonal functions of tide gauge and supporting sea surface temperature and heat storage data. The dominant EOF mode describes the mature phase of ENSO events and correlates (0.8) with the GCA south of the equator. The second mode describes transitions to and from ENSO events and correlates (0.9) with the GCA north of the equator. The typical scenario then is for the NECC to intensify about 6 months prior to the peak of an El Niño, to remain near mean conditions during the peak stage of El Niño, and to later weaken about 6 months following the peak. In contrast, the SEC generally weakens throughout an El Niño displaying eastward anomalies. This equatorial asymmetry in the GCAs is consistent with a similar asymmetry in the wind field over the western Pacific. The phase differences between the NECC and SEC are less apparent during La Niña events. The GCA results provide further evidence that transitional phases of ENSO are more active north than south of the equator in the warm pool region.

Full access
Alejandro Ludert
,
Bin Wang
, and
Mark A. Merrifield

Abstract

The U.S.-Affiliated Pacific Islands (USAPIs), located in the tropical western Pacific, are very susceptible to severe drought. Dry season (December–May) rainfall anomalies have different relationships to ENSO for USAPIs north and south of 7°N. South of 7°N, rainfall exhibits a canonical negative correlation with the Oceanic Niño Index (ONI) (i.e., dry conditions during warm periods). To the north, the dry season falls into either “canonical” or “noncanonical” (positively correlated with ONI) regimes. Noncanonical years pose an important forecasting challenge as severe droughts have occurred during cool ONI conditions (referred to here as “cool dry” cases). Composite analysis of the two regimes shows that for noncanonical cool dry years, anticyclonic circulation anomalies over the tropical western North Pacific (TWNP), with a band of anomalous dry conditions extending from the central Pacific toward Micronesia, result in unexpected droughts. In contrast, canonical “cool wet” events show cyclonic TWNP circulation and increased rainfall over the northern USAPIs. Maximum SST anomalies are located near the date line during noncanonical years, and farther east during canonical years. While both regimes show negative rainfall and TWNP anticyclonic circulation anomalies before the onset of the December–May dry season, during the dry season these anomalies persist during noncanonical events but rapidly reverse sign during canonical events. SST anomalies in the noncanonical regime extend eastward from the central Pacific rather than intensify in place over the eastern Pacific in the canonical regime. Differences in the evolution of circulation, precipitation, and SST anomalies suggest distinct physical mechanisms governing the two ENSO regimes, with possible ramifications for seasonal forecasts.

Full access
Øyvind Lundesgaard
,
Brian Powell
,
Mark Merrifield
,
Lisa Hahn-Woernle
, and
Peter Winsor

Abstract

Fjords along the western Antarctic Peninsula are episodically exposed to strong winds flowing down marine-terminating glaciers and out over the ocean. These wind events could potentially be an important mechanism for the ventilation of fjord waters. A strong wind event was observed in Andvord Bay in December 2015, and was associated with significant increases in upper-ocean salinity. We examine the dynamical impacts of such wind events during the ice-free summer season using a numerical model. Passive tracers are used to identify water mass pathways and quantify exchange with the outer ocean. Upwelling and outflow in the model fjord generate an average salinity increase of 0.3 in the upper ocean during the event, similar to observations from Andvord Bay. Down-fjord wind events are a highly efficient mechanism for flushing out the upper fjord waters, but have little net impact on deep waters in the inner fjord. As such, summer episodic wind events likely have a large effect on fjord phytoplankton dynamics and export of glacially modified upper waters, but are an unlikely mechanism for the replenishment of deep basin waters and oceanic heat transport toward inner-fjord glaciers.

Full access
Philip R. Thompson
,
Mark A. Merrifield
,
Judith R. Wells
, and
Chantel M. Chang

Abstract

The rate of coastal sea level change in the northeast Pacific (NEP) has decreased in recent decades. The relative contributions to the decreased rate from remote equatorial wind stress, local longshore wind stress, and local windstress curl are examined. Regressions of sea level onto wind stress time series and comparisons between NEP and Fremantle sea levels suggest that the decreased rate in the NEP is primarily due to oceanic adjustment to strengthened trade winds along the equatorial and coastal waveguides. When taking care to account for correlations between the various wind stress time series, the roles of longshore wind stress and local windstress curl are found to be of minor importance in comparison to equatorial forcing. The predictability of decadal sea level change rates along the NEP coastline is therefore largely determined by tropical variability. In addition, the importance of accounting for regional, wind-driven sea level variations when attempting to calculate accelerations in the long-term rate of sea level rise is demonstrated.

Full access
Julia W. Fiedler
,
Lauren Kim
,
Robert L. Grenzeback
,
Adam P. Young
, and
Mark A. Merrifield

Abstract

We demonstrate that a hovering, drone-mounted laser scanner (lidar) paired with a survey-grade satellite and inertial positioning system measures the wave transformation across the surf zone and the resulting runup with accuracy almost equal to a stationary truck-mounted terrestrial lidar. The drone, a multirotor small uncrewed aircraft system (sUAS), provides unobstructed measurements by hovering above the surf zone at 20-m elevation while scanning surfaces along a 150-m-wide cross-shore transect. The drone enables rapid data collection in remote locations where terrestrial scanning may not be possible. Allowing for battery changes, about 17 min of scanning data can be acquired every 25 min for several hours. Observations were collected with a wide (H s = 2.2 m) and narrow (H s = 0.8 m) surf zone, and are validated with traditional land-based survey techniques and an array of buried pressure sensors. Thorough postprocessing yields a stable ( σ ¯ = 1.7 cm ) back beach topography estimate comparable to the terrestrial lidar ( σ ¯ = 0.8 cm ). Statistical wave properties and runup values are calculated, as well as bathymetry inversions using a relatively simple nonlinear correction to wave crest phase speed in the surf zone, illustrating the utility of drone-based lidar observations for nearshore processes.

Open access
Mika N. Siegelman
,
Eric Firing
,
Mark A. Merrifield
,
Janet M. Becker
, and
Ruth C. Musgrave

Abstract

Motivated by observations of enhanced near-inertial currents at the island chain of Palau, the modification of wind-generated near-inertial oscillations (NIOs) by the presence of an island is examined using the analytic solutions of Longuet-Higgins and a linear, inviscid, 1.5-layer reduced-gravity model. The analytic solution for oscillations at the inertial frequency f provides insights into flow adjustment near the island but excludes wave dynamics. To account for wave motion, the numerical model initially is forced by a large-scale wind field rotating at f, where the forcing is increased then decreased to zero. Numerical simulations are carried out over a range of island radii and the ocean response detailed. Near the island, wind energy in the frequency band near f can excite subinertial island-trapped waves and superinertial Poincaré waves. In the small-island limit, both the Poincaré waves and the island-trapped waves are very near f, and their sum resembles the Longuet-Higgins analytic solution but with increased amplitude near the island. The flow field can be viewed as primarily a far-field NIO locally deflected by the island plus an island-trapped contribution, leading to enhanced near-inertial currents near the island, on the scale of the island radius. As the island size is increased, the island-trapped wave frequency deviates further from f and its amplitude depends strongly on the frequency bandwidth and wavenumber structure of the wind forcing. In the large-island limit, the island-trapped wave resembles a Kelvin wave, and the sum of incident and reflected Poincaré waves suppresses the near-inertial current amplitude near the island.

Significance Statement

Strong, impulsive winds over the ocean excite currents that rotate in the opposite direction to Earth’s rotation. This work examines how these wind-generated currents, known as near-inertial oscillations (NIOs), are modified by the presence of an island. Around small islands, the primary response is locally enhanced near-inertial currents. Alternatively, around large islands, near-inertial currents are weaker. Understanding how these currents behave should provide insight into the physical processes that drive current variability near islands and spur local mixing.

Restricted access
Luc Rainville
,
T. M. Shaun Johnston
,
Glenn S. Carter
,
Mark A. Merrifield
,
Robert Pinkel
,
Peter F. Worcester
, and
Brian D. Dushaw

Abstract

Most of the M 2 internal tide energy generated at the Hawaiian Ridge radiates away in modes 1 and 2, but direct observation of these propagating waves is complicated by the complexity of the bathymetry at the generation region and by the presence of interference patterns. Observations from satellite altimetry, a tomographic array, and the R/P FLIP taken during the Farfield Program of the Hawaiian Ocean Mixing Experiment (HOME) are found to be in good agreement with the output of a high-resolution primitive equation model, simulating the generation and propagation of internal tides. The model shows that different modes are generated with different amplitudes along complex topography. Multiple sources produce internal tides that sum constructively and destructively as they propagate. The major generation sites can be identified using a simplified 2D idealized knife-edge ridge model. Four line sources located on the Hawaiian Ridge reproduce the interference pattern of sea surface height and energy flux density fields from the numerical model for modes 1 and 2. Waves from multiple sources and their interference pattern have to be taken into account to correctly interpret in situ observations and satellite altimetry.

Full access
Xiaoyu Long
,
Matthew J. Widlansky
,
Fabian Schloesser
,
Philip R. Thompson
,
H. Annamalai
,
Mark A. Merrifield
, and
Hyang Yoon

Abstract

Hawaii experienced record-high sea levels during 2017, which followed the 2015 strong El Niño and coincided with weak trade winds in the tropical northeastern Pacific. The record sea levels were associated with a combination of processes, an important contributing factor of which was the persistent high sea level (~10 cm above normal) over a large region stretching between Hawaii and Mexico. High sea levels at Mexico are known to occur during strong El Niño as the coastal thermocline deepens. Planetary wave theory predicts that these coastal anomalies propagate westward into the basin interior; however, high sea levels at Hawaii do not occur consistently following strong El Niño events. In particular, Hawaii sea levels remained near normal following the previous strong El Niño of 1997. The processes controlling whether Hawaii sea levels rise after El Niño have so far remained unknown. Atmosphere-forced ocean model experiments show that anomalous surface cooling, controlled by variable trade winds, impacts sea level via mixed layer density, explaining much of the difference in Hawaiian sea level response after the two recent strong El Niño events. In climate model projections with greenhouse warming, more frequent weak trade winds following El Niño events are expected, suggesting that the occurrence of high sea levels at Hawaii will increase as oceanic anomalies more often traverse the basin.

Free access