Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Marlon Maranan x
  • Weather and Forecasting x
  • Refine by Access: All Content x
Clear All Modify Search
Eva-Maria Walz
Marlon Maranan
Roderick van der Linden
Andreas H. Fink
, and
Peter Knippertz


Current numerical weather prediction models show limited skill in predicting low-latitude precipitation. To aid future improvements, be it with better dynamical or statistical models, we propose a well-defined benchmark forecast. We use the arguably best available high-resolution, gauge-calibrated, gridded precipitation product, the Integrated Multisatellite Retrievals for GPM (IMERG) “final run” in a ±15-day window around the date of interest to build an empirical climatological ensemble forecast. This window size is an optimal compromise between statistical robustness and flexibility to represent seasonal changes. We refer to this benchmark as extended probabilistic climatology (EPC) and compute it on a 0.1° × 0.1° grid for 40°S–40°N and the period 2001–19. To reduce and standardize information, a mixed Bernoulli–Gamma distribution is fitted to the empirical EPC, which hardly affects predictive performance. The EPC is then compared to 1-day ensemble predictions from the European Centre for Medium-Range Weather Forecasts (ECMWF) using standard verification scores. With respect to rainfall amount, ECMWF performs only slightly better than EPS over most of the low latitudes and worse over high-mountain and dry oceanic areas as well as over tropical Africa, where the lack of skill is also evident in independent station data. For rainfall occurrence, EPC is superior over most oceanic, coastal, and mountain regions, although the better potential predictive ability of ECMWF indicates that this is mostly due to calibration problems. To encourage the use of the new benchmark, we provide the data, scripts, and an interactive web tool to the scientific community.

Open access