Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Martin Juckes x
  • Monthly Weather Review x
  • Refine by Access: All Content x
Clear All Modify Search
Volkmar Wirth
Christof Appenzeller
, and
Martin Juckes


The quasi-horizontal roll-up of unstable stratospheric intrusions into isolated vortices is known to result in specific structures on satellite water vapor images that are characterized by intermingling dark and light filaments. The current paper investigates how these features are generated and how they relate to partly similar features found on concurrent maps of the tropopause height or potential vorticity (PV). The roll-up of a stratospheric intrusion is simulated numerically with an idealized quasigeostrophic model, which focuses on the dynamics induced by anomalies in the height of the tropopause. The upper-tropospheric adiabatic vertical wind is calculated explicitly and is used to simulate water vapor images in the model. These images show qualitatively the same characteristic features as observed. They are generated through a combination of horizontal advection of initial moisture anomalies and the creation of additional moisture anomalies resulting from the upper-tropospheric vertical air motion. The latter is, in turn, induced by the quasi-horizontal motion of the tropopause anomaly. It is suggested that a substantial portion of the spiral-like structures on the water vapor images is likely to reflect the vertical wind induced by the evolution of the intrusion itself. When the tropopause is defined through a fairly low value of PV, it may acquire similar spiraling structures, as it is being advected almost like a passive tracer. On the other hand, for the dynamically active core part of the intrusion, which is located at higher values of PV, one may expect an evolution leading to more compact vortex cores and less structure overall.

Full access