Search Results

You are looking at 1 - 10 of 15 items for :

  • Author or Editor: Masaki Satoh x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Daisuke Takasuka
and
Masaki Satoh

Abstract

As one of the aspects of the diversity of the Madden–Julian oscillation (MJO), the modulation of initiation regions of the boreal-winter MJO is studied in terms of the relationship between intraseasonal and interannual variabilities. MJOs are categorized as those initiating in the Indian Ocean (IO), Maritime Continent (MC), and western Pacific (WP), referred to herein as IO-MJOs, MC-MJOs, and WP-MJOs, respectively. The composite analyses for each MJO category using observational data reveal that the diversity of MJO initiation regions directly results from the modulation of areas where horizontal advective premoistening efficiently occurs via intraseasonal/synoptic-scale winds. This is supported by the difference in the zonal location of equatorial intraseasonal circulations established before MJO initiation, which is related to a spatial change in background convection and associated Walker circulations forced by interannual sea surface temperature (SST) variability. Compared to IO-MJOs (favored in the climatological background on average), MC-MJOs tend to be realized under the eastern-Pacific El Niño–like condition, as a result of eastward-shifted intraseasonal convection and circulation patterns induced by background suppressed convection in the eastern MC. WP-MJOs are frequently initiated under the central-Pacific El Niño–like and positive IO dipole–like conditions, in which the WP is selectively moistened with the aid of background enhanced (suppressed) convection over the WP (the southeastern IO and the central-to-eastern Pacific). This major tendency derived from sample-limited observations is verified by a set of 15-yr numerical experiments with a global nonhydrostatic MJO-permitting model under a perpetual boreal-winter condition where observation-based SSTs are prescribed.

Open access
Yohei Yamada
and
Masaki Satoh

Abstract

Cloud feedback plays a key role in the future climate projection. Using global nonhydrostatic model (GNHM) simulation data for a present-day [control (CTL)] and a warmer [global warming (GW)] experiment, the authors estimate the contribution of tropical cyclones (TCs) to ice water paths (IWP) and liquid water paths (LWP) associated with TCs and their changes between CTL and GW experiments. They use GNHM with a 14-km horizontal mesh for explicitly calculating cloud microphysics without cumulus parameterization. This dataset shows that the cyclogenesis under GW conditions reduces to approximately 70% of that under CTL conditions, as shown in a previous study, and the tropical averaged IWP (LWP) is reduced by approximately 2.76% (0.86%). Horizontal distributions of IWP and LWP changes seem to be closely related to TC track changes. To isolate the contributions of IWP/LWP associated with TCs, the authors first examine the radial distributions of IWP/LWP from the TC center at their mature stages and find that they generally increase for more intense TCs. As the intense TC in GW increases, the IWP and LWP around the TC center in GW becomes larger than that in CTL. The authors next define the TC area as the region within 500 km from the TC center at its mature stages. They find that the TC’s contribution to the total tropical IWP (LWP) is 4.93% (3.00%) in CTL and 5.84% (3.69%) in GW. Although this indicates that the TC’s contributions to the tropical IWP/LWP are small, IWP/LWP changes in each basin behave in a manner similar to those of the cyclogenesis and track changes under GW.

Full access
Wataru Yanase
,
Masaki Satoh
,
Hiroshi Taniguchi
, and
Hatsuki Fujinami

Abstract

The environmental field of tropical cyclogenesis over the Bay of Bengal is analyzed for the extended summer monsoon season (approximately May–November) using best-track and reanalysis data. Genesis potential index (GPI) is used to assess four possible environmental factors responsible for tropical cyclogenesis: lower-tropospheric absolute vorticity, vertical shear, potential intensity, and midtropospheric relative humidity. The climatological cyclogenesis is active within high GPI in the premonsoon (~May) and postmonsoon seasons (approximately October–November), which is attributed to weak vertical shear. The genesis of intense tropical cyclone is suppressed within the low GPI in the mature monsoon (approximately June–September), which is due to the strong vertical shear. In addition to the climatological seasonal transition, the authors’ composite analysis based on tropical cyclogenesis identified a high GPI signal moving northward with a periodicity of approximately 30–40 days, which is associated with boreal summer intraseasonal oscillation (BSISO). In a composite analysis based on the BSISO phase, the active cyclogenesis occurs in the high GPI phase of BSISO. It is revealed that the high GPI of BSISO is attributed to high relative humidity and large absolute vorticity. Furthermore, in the mature monsoon season, when the vertical shear is climatologically strong, tropical cyclogenesis particularly favors the phase of BSISO that reduces vertical shear effectively. Thus, the combination of seasonal and intraseasonal effects is important for the tropical cyclogenesis, rather than the independent effects.

Full access
Tomonori Sato
,
Hiroaki Miura
,
Masaki Satoh
,
Yukari N. Takayabu
, and
Yuqing Wang

Abstract

This study analyzes the diurnal cycle of precipitation simulated in a global cloud-resolving model (GCRM) named the Nonhydrostatic Icosahedral Atmospheric Model (NICAM). A 30-day integration of NICAM successfully simulates the precipitation diurnal cycle associated with the land–sea breeze and the thermally induced topographic circulations as well as the horizontal propagation of diurnal cycle signals. The first harmonic of the diurnal cycle of precipitation in the 7-km run agrees well with that from satellite observations in its geographical distributions although its amplitude is slightly overestimated. The NICAM simulation revealed that the precipitation diurnal cycle over the Maritime Continent is strongly coupled with the land–sea breeze that controls the convergence/divergence pattern in the lower troposphere around the islands. The analysis also suggests that the cold pool often forms over the open ocean where the precipitation intensity is high, and the propagation of the cold pool events is related to the precipitation diurnal cycle as well as the land–sea breeze.

Sensitivity experiments suggest a prominent horizontal resolution dependence of the simulated precipitation diurnal cycle. Over continental areas the 14-km run induces the diurnal peak about three hours later than the 7-km run. The 3.5-km run produces the peak time and amplitude that are very similar to those in Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) observations. Meanwhile, the resolution dependence in phase and amplitude is negligibly small over the open oceans. This contrast sensitivity to the horizontal resolution is attributed to the differences in structure and life cycle of convective systems over land and ocean.

Diurnal peaks of precipitable water vapor, precipitation, and outgoing longwave radiation (OLR) are compared over land areas using the NICAM 7-km run. The daily precipitable water vapor maximum appears around 1500 local time (LT), which is followed by the precipitation peak around 1630 LT. The diurnal cycle of high clouds tends to peak around 1930 LT, three hours later than the precipitation peak. These results from NICAM simulations can explain the cause of the phase differences among precipitation products based on several satellite observations. The authors demonstrate that the GCRM is a promising tool for realistically simulating the precipitation diurnal cycle and could be quite useful for studying the role of the diurnal cycle in the climate systems in a global context.

Full access
Shin-ichi Iga
,
Hirofumi Tomita
,
Yoko Tsushima
, and
Masaki Satoh

Abstract

The relationship between upper-tropospheric ice cloud properties and the Hadley circulation intensity is examined through parameter sensitivity studies of global cloud-system-resolving simulations with explicit cloud convection. Experiments under a perpetual July condition were performed by changing parameters in the boundary layer and cloud microphysics schemes, with a mesh size of approximately 14 km. One additional experiment with a mesh size of approximately 7 km was also conducted. These experiments produced a variety of upper-cloud coverage and outgoing longwave radiation (OLR) distributions. The authors found that, as the upper-cloud coverage increased, the total precipitation decreased and the intensity of the Hadley circulation weakened because of energy balance constraints that radiative cooling are balanced by adiabatic warming. Interestingly, the ice water path was not correlated with the upper ice-loud coverage or OLR, indicating that the spatial coverage of upper ice clouds, rather than the ice water content, was the key factor in the radiation budget.

Full access
Akira T. Noda
,
Kazuyoshi Oouchi
,
Masaki Satoh
, and
Hirofumi Tomita

Abstract

This study investigated the resolution dependence of diurnal variation in tropical convective systems represented by a global nonhydrostatic model without cumulus parameterization. This paper describes the detailed characteristics of diurnal variation in surface precipitation based on three-dimensional data, with the aim of explicitly clarifying the mechanism that underlies the variation. The study particularly focused on the evolution in the size of the precipitation area for deep convective systems with an analysis of the vertical structure of thermodynamic fields. This analysis compares the results of simulations with horizontal grid sizes of 14 and 7 km (R14 and R7, respectively). Over land, the phase delay of diurnal variations in R7 is about 3 h less than that in R14. R7 produces a pronounced diurnal variation in the size distributions of precipitating area(s), especially for areas with a radius of 0–100 km; this characteristic is not found for R14. Such areas actively evolve between noon and evening, leading to the smooth development of larger-scale precipitating areas having a radius of 100–150 km. The maximum surface precipitation in R7 over land occurs at around 2000 local time throughout the tropics, approximately 2 h prior to the development of nighttime deep convection. Deep convective regimes are important as agents of vertical heat transport in the tropics. The present results suggest that precipitating areas with a radius <100 km make a strong contribution to the total amount of precipitation and to mass transport.

Full access
Chikara Tsuchiya
,
Kaoru Sato
,
Tomoe Nasuno
,
Akira T. Noda
, and
Masaki Satoh

Abstract

Statistical characteristics of surface meteorology are examined in terms of frequency spectra. According to a recent work using hourly data over 50 yr in the Antarctic, the frequency spectra have a characteristic shape proportional to two different powers of the frequency in the frequency ranges lower and higher than a transition frequency of (several days)−1. To confirm the universality of the characteristic spectra, hourly data—including surface temperature, sea level pressure, and zonal and meridional winds—collected over 45 yr at 138 stations in Japan were analyzed. Similar spectral shapes are obtained for any physical quantities at all stations. The spectral slopes clearly depend on the latitude, particularly for sea level pressure, which in the high-frequency range are steeper at higher latitudes. Next, the analysis was extended using realistic simulation data over one month with a nonhydrostatic model to examine the global characteristics of the spectra in the high-frequency range. The model spectra accord well with the observations in Japan. The spectral slopes are largely dependent on the latitude—that is, shallow in the low latitudes, and steep in the middle and high latitudes for all the physical quantities. The latitudinal change of the spectral slope is severe around 30°, which may be due to the dynamical transition from nongeostrophy to geostrophy. The longitudinal variations are also observed according to the geography. The variance is large in the storm-track region for surface pressure, on the continents for temperature and over the ocean for winds.

Full access
Tatsuya Seiki
,
Chihiro Kodama
,
Akira T. Noda
, and
Masaki Satoh

Abstract

This study examines the impact of an alteration of a cloud microphysics scheme on the representation of longwave cloud radiative forcing (LWCRF) and its impact on the atmosphere in global cloud-system-resolving simulations. A new double-moment bulk cloud microphysics scheme is used, and the simulated results are compared with those of a previous study. It is demonstrated that improvements within the new cloud microphysics scheme have the potential to substantially improve climate simulations. The new cloud microphysics scheme represents a realistic spatial distribution of the cloud fraction and LWCRF, particularly near the tropopause. The improvement in the cirrus cloud-top height by the new cloud microphysics scheme substantially reduces the warm bias in atmospheric temperature from the previous simulation via LWCRF by the cirrus clouds. The conversion rate of cloud ice to snow and gravitational sedimentation of cloud ice are the most important parameters for determining the strength of the radiative heating near the tropopause and its impact on atmospheric temperature.

Full access
Masaki Satoh
,
Shin-ichi Iga
,
Hirofumi Tomita
,
Yoko Tsushima
, and
Akira T. Noda

Abstract

Using a global nonhydrostatic model with explicit cloud processes, upper-cloud changes are investigated by comparing the present climate condition under the perpetual July setting and the global warming condition, in which the sea surface temperature (SST) is raised by 2°. The sensitivity of the upper-cloud cover and the ice water path (IWP) are investigated through a set of experiments. The responses of convective mass flux and convective areas are also examined, together with those of the large-scale subsidence and relative humidity in the subtropics. The responses of the IWP and the upper-cloud cover are found to be opposite; that is, as the SST increases, the IWP averaged over the tropics decreases, whereas the upper-cloud cover in the tropics increases. To clarify the IWP response, a simple conceptual model is constructed. The model consists of three columns of deep convective core, anvil, and environmental subsidence regions. The vertical profiles of hydrometers are predicted with cloud microphysics processes and kinematically prescribed circulation. The reduction in convective mass flux is found to be a primary factor in the decrease of the IWP under the global warming condition. Even when a different and more comprehensive cloud microphysics scheme is used, the reduction in the IWP due to the mass flux change is also confirmed.

Full access
Ying-Wen Chen
,
Masaki Satoh
,
Chihiro Kodama
,
Akira T. Noda
, and
Yohei Yamada

Abstract

This study examines projections of high clouds related to sea surface temperature (SST) change using 14-km simulation output from NICAM, a global cloud system–resolving model. This study focuses on the vertical and horizontal structure of high cloud response to the SST pattern and how these cloud responses are linked to ice hydrometeors, such as cloud ice, snow, and graupel, which are not resolved by conventional general circulation models (GCMs). Under the present climate, the vertical and horizontal structure of the simulated increase in tropical high cloud amount for positive tropical mean HadISST SST anomalies has similar behavior to that of the GCM-Oriented CALIPSO Cloud Product (GOCCP) cloud fraction for HadISST SST. We further show that cloud ice is the main contributor to the simulated high cloud amount. Under a warming climate, the composite vertical and horizontal structure of the tropical high cloud response to the SST shows similar behavior to that under the present climate, but the amplitude of the variation is greater by a factor of 1.5 and the variation is more widespread. This amplification contributes to the high cloud increase under the warming climate, which is directly linked to the wider spatial extent of cloud ice in the eastern Pacific region. This study specifically reveals the similarity of the patterns of the responses of the high cloud fraction and cloud ice to global warming, indicating that an appropriate treatment of the complete spectrum of ice hydrometeors in global climate models is key to simulating high clouds and their response to global warming.

Open access