Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Masaru Kunii x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Takemasa Miyoshi
,
Masaru Kunii
,
Juan Ruiz
,
Guo-Yuan Lien
,
Shinsuke Satoh
,
Tomoo Ushio
,
Kotaro Bessho
,
Hiromu Seko
,
Hirofumi Tomita
, and
Yutaka Ishikawa

Abstract

Sudden local severe weather is a threat, and we explore what the highest-end supercomputing and sensing technologies can do to address this challenge. Here we show that using the Japanese flagship “K” supercomputer, we can synergistically integrate “big simulations” of 100 parallel simulations of a convective weather system at 100-m grid spacing and “big data” from the next-generation phased array weather radar that produces a high-resolution 3-dimensional rain distribution every 30 s—two orders of magnitude more data than the currently used parabolic-antenna radar. This “big data assimilation” system refreshes 30-min forecasts every 30 s, 120 times more rapidly than the typical hourly updated systems operated at the world’s weather prediction centers. A real high-impact weather case study shows encouraging results of the 30-s-update big data assimilation system.

Full access
Yihong Duan
,
Jiandong Gong
,
Jun Du
,
Martin Charron
,
Jing Chen
,
Guo Deng
,
Geoff DiMego
,
Masahiro Hara
,
Masaru Kunii
,
Xiaoli Li
,
Yinglin Li
,
Kazuo Saito
,
Hiromu Seko
,
Yong Wang
, and
Christoph Wittmann

The Beijing 2008 Olympics Research and Development Project (B08RDP), initiated in 2004 under the World Meteorological Organization (WMO) World Weather Research Programme (WWRP), undertook the research and development of mesoscale ensemble prediction systems (MEPSs) and their application to weather forecast support during the Beijing Olympic Games. Six MEPSs from six countries, representing the state-of-the-art regional EPSs with near-real-time capabilities and emphasizing on the 6–36-h forecast lead times, participated in the project.

The background, objectives, and implementation of B08RDP, as well as the six MEPSs, are reviewed. The accomplishments are summarized, which include 1) providing value-added service to the Olympic Games, 2) advancing MEPS-related research, 3) accelerating the transition from research to operations, and 4) training forecasters in utilizing forecast uncertainty products. The B08RDP has fulfilled its research (MEPS development) and demonstration (value-added service) purposes. The research conducted covers the areas of verification, examining the value of MEPS relative to other numerical weather prediction (NWP) systems, combining multimodel or multicenter ensembles, bias correction, ensemble perturbations [initial condition (IC), lateral boundary condition (LBC), land surface IC, and model physics], downscaling, forecast applications, data assimilation, and storm-scale ensemble modeling. Seven scientific issues important to MEPS have been identified. It is recognized that the daily use of forecast uncertainty information by forecasters remains a challenge. Development of forecaster-friendly products and training activities should be a long-term effort and needs to be continuously enhanced.

The B08RDP dataset is also a valuable asset to the research community. The experience gained in international collaboration, organization, and implementation of a multination regional EPS for a common goal and to address common scientific issues can be shared by the ongoing projects The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble—Limited Area Models (TIGGE-LAM) and North American Ensemble Forecast System—Limited Area Models (NAEFS-LAM).

Full access