Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Matilde Rusticucci x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Bárbara Tencer
,
Matilde Rusticucci
,
Phil Jones
, and
David Lister

This study presents a southeastern South American gridded dataset of daily minimum and maximum surface temperatures for 1961–2000. The data used for the gridding are observed daily data from meteorological stations in Argentina, Brazil, Paraguay, and Uruguay from the database of the European Community's Sixth Framework Programme A Europe–South America Network for Climate Change Assessment and Impact Studies in La Plata Basin (EU FP6 CLARIS LPB), with some additional data series. This gridded dataset is new for the region, not only for its spatial and temporal extension, but also for its temporal resolution. The region for which the gridded dataset has been developed is 20°–40°S, 45°–70°W, with a resolution of 0.5° latitude × 0.5° longitude. Since the methodology used produces an estimation of gridbox averages, the developed dataset is very useful for the validation of regional climate models. The comparison of gridded and observed data provides an evaluation of the usefulness of the interpolated data. According to monthly-mean values and daily variability, the methodology of interpolation developed during the EU FP6 ENSEMBLE-based predictions of climate changes and their impacts (ENSEMBLES) project for its application in Europe is also suitable for southeastern South America. Root-mean-square errors for the whole region are 1.77°C for minimum temperature and 1.13°C for maximum temperature. These errors are comparable to values obtained for Europe with the same methodology.

Full access
Kirsten L. Findell
,
Rowan Sutton
,
Nico Caltabiano
,
Anca Brookshaw
,
Patrick Heimbach
,
Masahide Kimoto
,
Scott Osprey
,
Doug Smith
,
James S. Risbey
,
Zhuo Wang
,
Lijing Cheng
,
Leandro B. Diaz
,
Markus G. Donat
,
Michael Ek
,
June-Yi Lee
,
Shoshiro Minobe
,
Matilde Rusticucci
,
Frederic Vitart
, and
Lin Wang

Abstract

The World Climate Research Programme (WCRP) envisions a world “that uses sound, relevant, and timely climate science to ensure a more resilient present and sustainable future for humankind.” This bold vision requires the climate science community to provide actionable scientific information that meets the evolving needs of societies all over the world. To realize its vision, WCRP has created five Lighthouse Activities to generate international commitment and support to tackle some of the most pressing challenges in climate science today. The overarching goal of the Lighthouse Activity on Explaining and Predicting Earth System Change is to develop an integrated capability to understand, attribute, and predict annual to decadal changes in the Earth system, including capabilities for early warning of potential high impact changes and events. This article provides an overview of both the scientific challenges that must be addressed, and the research and other activities required to achieve this goal. The work is organized in three thematic areas: (i) monitoring and modeling Earth system change; (ii) integrated attribution, prediction, and projection; and (iii) assessment of current and future hazards. Also discussed are the benefits that the new capability will deliver. These include improved capabilities for early warning of impactful changes in the Earth system, more reliable assessments of meteorological hazard risks, and quantitative attribution statements to support the Global Annual to Decadal Climate Update and State of the Climate reports issued by the World Meteorological Organization.

Open access
Haibo Du
,
Markus G. Donat
,
Shengwei Zong
,
Lisa V. Alexander
,
Rodrigo Manzanas
,
Andries Kruger
,
Gwangyong Choi
,
Jim Salinger
,
Hong S. He
,
Mai-He Li
,
Fumiaki Fujibe
,
Banzragch Nandintsetseg
,
Shafiqur Rehman
,
Farhat Abbas
,
Matilde Rusticucci
,
Arvind Srivastava
,
Panmao Zhai
,
Tanya Lippmann
,
Ibouraïma Yabi
,
Michael C. Stambaugh
,
Shengzhong Wang
,
Altangerel Batbold
,
Priscilla Teles de Oliveira
,
Muhammad Adrees
,
Wei Hou
,
Claudio Moises Santos e Silva
,
Paulo Sergio Lucio
, and
Zhengfang Wu

Abstract

Extreme precipitation occurring on consecutive days may substantially increase the risk of related impacts, but changes in such events have not been studied at a global scale. Here we use a unique global dataset based on in situ observations and multimodel historical and future simulations to analyze the changes in the frequency of extreme precipitation on consecutive days (EPCD). We further disentangle the relative contributions of variations in precipitation intensity and temporal correlation of extreme precipitation to understand the processes that drive the changes in EPCD. Observations and climate model simulations show that the frequency of EPCD is increasing in most land regions, in particular, in North America, Europe, and the Northern Hemisphere high latitudes. These increases are primarily a consequence of increasing precipitation intensity, but changes in the temporal correlation of extreme precipitation regionally amplify or reduce the effects of intensity changes. Changes are larger in simulations with a stronger warming signal, suggesting that further increases in EPCD are expected for the future under continued climate warming.

Full access