Search Results
You are looking at 1 - 3 of 3 items for :
- Author or Editor: Matthew Lebsock x
- Monthly Weather Review x
- Refine by Access: All Content x
Abstract
A single-column model (SCM) is used to simulate a variety of environmental conditions between Los Angeles, California, and Hawaii in order to identify physical elements of parameterizations that are required to reproduce the observed behavior of marine boundary layer (MBL) cloudiness. The SCM is composed of the JPL eddy-diffusivity/mass-flux (EDMF) mixing formulation and the RRTMG radiation model. Model forcings are provided by the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA2). Simulated low cloud cover (LCC), rain rate, albedo, and liquid water path are compared to collocated pixel-level observations from A-Train satellites. This framework ensures that the JPL EDMF is able to simulate a continuum of real-world conditions. First, the JPL EDMF is shown to reproduce the observed mean LCC as a function of lower-tropospheric stability. Joint probability distributions of lower-tropospheric cloud fraction, height, and lower-tropospheric stability (LTS) show that the JPL EDMF improves upon its MERRA2 input but struggles to match the frequency of observed intermediate-range LCC. We then illustrate the physical roles of plume lateral entrainment and eddy-diffusivity mixing length in producing a realistic behavior of LCC as a function of LTS. In low-LTS conditions, LCC is mostly sensitive to the ability of convection to mix moist air out of the MBL. In high-LTS conditions, LCC is also sensitive to the turbulent mixing of free-tropospheric air into the MBL. In the intermediate LTS regime typical of stratocumulus–cumulus transition there is proportional sensitivity to both mixing mechanisms, emphasizing the utility of a combined eddy-diffusivity/mass-flux approach for representing mixing processes.
Abstract
A single-column model (SCM) is used to simulate a variety of environmental conditions between Los Angeles, California, and Hawaii in order to identify physical elements of parameterizations that are required to reproduce the observed behavior of marine boundary layer (MBL) cloudiness. The SCM is composed of the JPL eddy-diffusivity/mass-flux (EDMF) mixing formulation and the RRTMG radiation model. Model forcings are provided by the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA2). Simulated low cloud cover (LCC), rain rate, albedo, and liquid water path are compared to collocated pixel-level observations from A-Train satellites. This framework ensures that the JPL EDMF is able to simulate a continuum of real-world conditions. First, the JPL EDMF is shown to reproduce the observed mean LCC as a function of lower-tropospheric stability. Joint probability distributions of lower-tropospheric cloud fraction, height, and lower-tropospheric stability (LTS) show that the JPL EDMF improves upon its MERRA2 input but struggles to match the frequency of observed intermediate-range LCC. We then illustrate the physical roles of plume lateral entrainment and eddy-diffusivity mixing length in producing a realistic behavior of LCC as a function of LTS. In low-LTS conditions, LCC is mostly sensitive to the ability of convection to mix moist air out of the MBL. In high-LTS conditions, LCC is also sensitive to the turbulent mixing of free-tropospheric air into the MBL. In the intermediate LTS regime typical of stratocumulus–cumulus transition there is proportional sensitivity to both mixing mechanisms, emphasizing the utility of a combined eddy-diffusivity/mass-flux approach for representing mixing processes.
Abstract
We develop a methodology for identification of candidate observables that best constrain the parameterization of physical processes in numerical models. This methodology consists of three steps: (i) identifying processes that significantly impact model results, (ii) identifying observables that best constrain the influential processes, and (iii) investigating the sensitivity of the model results to the measurement error and vertical resolution of the constraining observables. This new methodology is applied to the Jet Propulsion Laboratory stochastic multiplume Eddy-Diffusivity/Mass-Flux (JPL-EDMF) model for two case studies representing nonprecipitating marine stratocumulus and marine shallow convection. The uncertainty of physical processes is characterized with uncertainty of model parameters. We find that the most uncertain processes in the JPL-EDMF model are related to the representation of lateral entrainment for convective plumes and parameterization of mixing length scale for the eddy-diffusivity part of the model. The results show a strong interaction between these uncertain processes. Measurements of the water vapor profile for shallow convection and of the cloud fraction profile for the stratocumulus case are among those measurements that best constrain the uncertain JPL-EDMF processes. The interdependence of the required vertical resolution and error characteristics of the observational system are shown. If the observations are associated with larger error, their vertical resolution has to be finer and vice versa. We suggest that the methodology and results presented here provide an objective basis for defining requirements for future observing systems such as future satellite missions to observe clouds and the planetary boundary layer.
Abstract
We develop a methodology for identification of candidate observables that best constrain the parameterization of physical processes in numerical models. This methodology consists of three steps: (i) identifying processes that significantly impact model results, (ii) identifying observables that best constrain the influential processes, and (iii) investigating the sensitivity of the model results to the measurement error and vertical resolution of the constraining observables. This new methodology is applied to the Jet Propulsion Laboratory stochastic multiplume Eddy-Diffusivity/Mass-Flux (JPL-EDMF) model for two case studies representing nonprecipitating marine stratocumulus and marine shallow convection. The uncertainty of physical processes is characterized with uncertainty of model parameters. We find that the most uncertain processes in the JPL-EDMF model are related to the representation of lateral entrainment for convective plumes and parameterization of mixing length scale for the eddy-diffusivity part of the model. The results show a strong interaction between these uncertain processes. Measurements of the water vapor profile for shallow convection and of the cloud fraction profile for the stratocumulus case are among those measurements that best constrain the uncertain JPL-EDMF processes. The interdependence of the required vertical resolution and error characteristics of the observational system are shown. If the observations are associated with larger error, their vertical resolution has to be finer and vice versa. We suggest that the methodology and results presented here provide an objective basis for defining requirements for future observing systems such as future satellite missions to observe clouds and the planetary boundary layer.
Abstract
While GCM horizontal resolution has received the majority of scale improvements in recent years, ample evidence suggests that a model’s vertical resolution exerts a strong control on its ability to accurately simulate the physics of the marine boundary layer. Here we show that, regardless of parameter tuning, the ability of a single-column model (SCM) to simulate the subtropical marine boundary layer improves when its vertical resolution is improved. We introduce a novel objective tuning technique to optimize the parameters of an SCM against profiles of temperature and moisture and their turbulent fluxes, horizontal winds, cloud water, and rainwater from large-eddy simulations (LES). We use this method to identify optimal parameters for simulating marine stratocumulus and shallow cumulus. The novel tuning method utilizes an objective performance metric that accounts for the uncertainty in the LES output, including the covariability between model variables. Optimization is performed independently for different vertical grid spacings and value of time step, ranging from coarse scales often used in current global models (120 m, 180 s) to fine scales often used in parameterization development and large-eddy simulations (10 m, 15 s). Uncertainty-weighted disagreement between the SCM and LES decreases by a factor of ∼5 when vertical grid spacing is improved from 120 to 10 m, with time step reductions being of secondary importance. Model performance is shown to converge at a vertical grid spacing of 20 m, with further refinements to 10 m leading to little further improvement.
Significance Statement
In successive generations of computer models that simulate Earth’s atmosphere, improvements have been mainly accomplished by reducing the horizontal sizes of discretized grid boxes, while the vertical grid spacing has seen comparatively lesser refinements. Here we advocate for additional attention to be paid to the number of vertical layers in these models, especially in the model layers closest to Earth’s surface where climatologically important marine stratocumulus and shallow cumulus clouds reside. Our experiments show that the ability of a one-dimensional model to represent physical processes important to these clouds is strongly dependent on the model’s vertical grid spacing.
Abstract
While GCM horizontal resolution has received the majority of scale improvements in recent years, ample evidence suggests that a model’s vertical resolution exerts a strong control on its ability to accurately simulate the physics of the marine boundary layer. Here we show that, regardless of parameter tuning, the ability of a single-column model (SCM) to simulate the subtropical marine boundary layer improves when its vertical resolution is improved. We introduce a novel objective tuning technique to optimize the parameters of an SCM against profiles of temperature and moisture and their turbulent fluxes, horizontal winds, cloud water, and rainwater from large-eddy simulations (LES). We use this method to identify optimal parameters for simulating marine stratocumulus and shallow cumulus. The novel tuning method utilizes an objective performance metric that accounts for the uncertainty in the LES output, including the covariability between model variables. Optimization is performed independently for different vertical grid spacings and value of time step, ranging from coarse scales often used in current global models (120 m, 180 s) to fine scales often used in parameterization development and large-eddy simulations (10 m, 15 s). Uncertainty-weighted disagreement between the SCM and LES decreases by a factor of ∼5 when vertical grid spacing is improved from 120 to 10 m, with time step reductions being of secondary importance. Model performance is shown to converge at a vertical grid spacing of 20 m, with further refinements to 10 m leading to little further improvement.
Significance Statement
In successive generations of computer models that simulate Earth’s atmosphere, improvements have been mainly accomplished by reducing the horizontal sizes of discretized grid boxes, while the vertical grid spacing has seen comparatively lesser refinements. Here we advocate for additional attention to be paid to the number of vertical layers in these models, especially in the model layers closest to Earth’s surface where climatologically important marine stratocumulus and shallow cumulus clouds reside. Our experiments show that the ability of a one-dimensional model to represent physical processes important to these clouds is strongly dependent on the model’s vertical grid spacing.