Search Results
Abstract
A revised version of the CloudSat–MODIS cloud liquid water retrieval algorithm is presented. The new algorithm, which combines measurements of radar reflectivity and cloud optical depth, addresses issues discovered in the current CloudSat–MODIS cloud water content (CWC) product. This current product is shown to be underconstrained by observations and to be too dependent on prior information incorporated into the Bayesian optimal-estimation algorithm. The most significant change made to the algorithm in this study was decreasing the number of independent variables to allow the observations to constrain the retrieved values better. The retrieval was also reformulated for improved compliance with the mathematical assumptions of the optimal-estimation algorithm. To validate the accuracy of the revised algorithm, the path-integrated attenuation (PIA) of the CloudSat radar signal was computed from the algorithm results. These modeled values were compared with independent measurements of the PIA that were obtained using a surface reference technique. This comparison shows that the cloud liquid water retrieved by the algorithm is close to being unbiased. The revised algorithm was also found to be an improvement over the current CloudSat CWC product and, to a lesser degree, the MODIS-derived cloud liquid water path.
Abstract
A revised version of the CloudSat–MODIS cloud liquid water retrieval algorithm is presented. The new algorithm, which combines measurements of radar reflectivity and cloud optical depth, addresses issues discovered in the current CloudSat–MODIS cloud water content (CWC) product. This current product is shown to be underconstrained by observations and to be too dependent on prior information incorporated into the Bayesian optimal-estimation algorithm. The most significant change made to the algorithm in this study was decreasing the number of independent variables to allow the observations to constrain the retrieved values better. The retrieval was also reformulated for improved compliance with the mathematical assumptions of the optimal-estimation algorithm. To validate the accuracy of the revised algorithm, the path-integrated attenuation (PIA) of the CloudSat radar signal was computed from the algorithm results. These modeled values were compared with independent measurements of the PIA that were obtained using a surface reference technique. This comparison shows that the cloud liquid water retrieved by the algorithm is close to being unbiased. The revised algorithm was also found to be an improvement over the current CloudSat CWC product and, to a lesser degree, the MODIS-derived cloud liquid water path.
Abstract
Satellite observations are used to deduce the relationship between cloud water and precipitation water for low-latitude shallow marine clouds. The specific sensors that facilitate the analysis are the collocated CloudSat profiling radar and the Moderate Resolution Imaging Spectroradiometer (MODIS). The separation of the cloud water and precipitation water signals relies on the relative insensitivity of MODIS to the presence of precipitation water in conjunction with estimates of the path-integrated attenuation of the CloudSat radar beam while explicitly accounting for the effect of precipitation water on the observed MODIS optical depth. Variations in the precipitation water path are shown to be associated with both the cloud water path and the cloud effective radius, suggesting both macrophysical and microphysical controls on the production of precipitation water. The method outlined here is used to place broad bounds on the mean relationship between the precipitation water path and the cloud water path in shallow marine clouds, given certain clearly stated assumptions. The ratio of precipitation water to cloud water is shown to increase from zero at low cloud water path values to roughly 0.5 at 500 g m−2 of cloud water. The retrieval results further show that the median influence of precipitation on the observed optical depth increases monotonically with optical depth varying between 1% and 5% at 500 g m−2 of cloud water with the source of the uncertainty deriving from the assumption of the nature of the precipitation drop size distribution.
Abstract
Satellite observations are used to deduce the relationship between cloud water and precipitation water for low-latitude shallow marine clouds. The specific sensors that facilitate the analysis are the collocated CloudSat profiling radar and the Moderate Resolution Imaging Spectroradiometer (MODIS). The separation of the cloud water and precipitation water signals relies on the relative insensitivity of MODIS to the presence of precipitation water in conjunction with estimates of the path-integrated attenuation of the CloudSat radar beam while explicitly accounting for the effect of precipitation water on the observed MODIS optical depth. Variations in the precipitation water path are shown to be associated with both the cloud water path and the cloud effective radius, suggesting both macrophysical and microphysical controls on the production of precipitation water. The method outlined here is used to place broad bounds on the mean relationship between the precipitation water path and the cloud water path in shallow marine clouds, given certain clearly stated assumptions. The ratio of precipitation water to cloud water is shown to increase from zero at low cloud water path values to roughly 0.5 at 500 g m−2 of cloud water. The retrieval results further show that the median influence of precipitation on the observed optical depth increases monotonically with optical depth varying between 1% and 5% at 500 g m−2 of cloud water with the source of the uncertainty deriving from the assumption of the nature of the precipitation drop size distribution.
Abstract
An algorithm that derives the nonprecipitating cloud liquid water path W cld from CloudSat using a surface reference technique (SRT) is presented. The uncertainty characteristics of the SRT are evaluated. It is demonstrated that an accurate analytical formulation for the pixel-scale precision can be derived. The average precision of the SRT is estimated to be 34 g m−2 at the individual pixel scale; however, precision systematically decreases from around 30 to 40 g m−2 as cloud fraction varies from 0% to 100%. The retrievals of clear-sky W cld have a mean bias of 0.9 g m−2. Output from a large-eddy simulation coupled to a radar simulator shows that an additional bias of −8% may result from nonuniformity within the footprint of cloudy pixels. The retrieval yield for the SRT, measured relative to all warm clouds over ocean between 60°N and 60°S latitude is 43%. The SRT W cld is compared with one estimate of W cld from the Moderate Resolution Imaging Spectroradiometer (MODIS) using an adiabatic cloud profile and an effective radius derived from 3.7-μm reflectance. A strong correlation between the mean MODIS W cld and SRT W cld is found across diverse cloud regimes, but with biases in the mean W cld that are cloud-regime dependent. Overall, the mean bias of the SRT relative to MODIS is −13.1 g m−2. Systematic underestimates of W cld by the SRT resulting from nonuniform beamfilling cannot be ruled out as an explanation for the retrieval bias.
Abstract
An algorithm that derives the nonprecipitating cloud liquid water path W cld from CloudSat using a surface reference technique (SRT) is presented. The uncertainty characteristics of the SRT are evaluated. It is demonstrated that an accurate analytical formulation for the pixel-scale precision can be derived. The average precision of the SRT is estimated to be 34 g m−2 at the individual pixel scale; however, precision systematically decreases from around 30 to 40 g m−2 as cloud fraction varies from 0% to 100%. The retrievals of clear-sky W cld have a mean bias of 0.9 g m−2. Output from a large-eddy simulation coupled to a radar simulator shows that an additional bias of −8% may result from nonuniformity within the footprint of cloudy pixels. The retrieval yield for the SRT, measured relative to all warm clouds over ocean between 60°N and 60°S latitude is 43%. The SRT W cld is compared with one estimate of W cld from the Moderate Resolution Imaging Spectroradiometer (MODIS) using an adiabatic cloud profile and an effective radius derived from 3.7-μm reflectance. A strong correlation between the mean MODIS W cld and SRT W cld is found across diverse cloud regimes, but with biases in the mean W cld that are cloud-regime dependent. Overall, the mean bias of the SRT relative to MODIS is −13.1 g m−2. Systematic underestimates of W cld by the SRT resulting from nonuniform beamfilling cannot be ruled out as an explanation for the retrieval bias.
Abstract
This paper is the first attempt to document a simple convection-tracking method based on the IMERG precipitation product to generate an IMERG-based Convection Tracking (IMERG-CT) dataset. Up to now, precipitation datasets have been Eulerian accumulations. Now with IMERG-CT, we can estimate total rainfall based on Lagrangian accumulations, which is a very important step in diagnosing cloud-precipitation process following the evolution of air masses. Convection-tracking algorithms have traditionally been developed on the basis of brightness temperature (Tb) from satellite infrared (IR) retrievals. However, vigorous rainfall can be produced by warm-topped systems in a moist environment; this situation cannot be captured by traditional IR-based tracking but is observed in IMERG-CT. Therefore, an advantage of IMERG-CT is its ability to include the previously missing information of shallow clouds that grow into convective storms, which provides us more-complete life cycle records of convective storms than traditional IR-based tracking does. This study also demonstrates the utility of IMERG-CT through investigating various properties of convective systems in terms of the evolution before and after peak precipitation rate and amount. For example, composite analysis reveals a link between evolution of precipitation and convective development: the signature of stratiform anvils remaining after the storm has produced the maximum rainfall, as average Tb stays almost constant for 5 h after the peak of precipitation. Our study highlights the importance of joint analysis of cloud and precipitation data in time sequence, which helps to elucidate the underlying dynamic processes producing tropical rainfall and its resultant effects on the atmospheric thermodynamics.
Abstract
This paper is the first attempt to document a simple convection-tracking method based on the IMERG precipitation product to generate an IMERG-based Convection Tracking (IMERG-CT) dataset. Up to now, precipitation datasets have been Eulerian accumulations. Now with IMERG-CT, we can estimate total rainfall based on Lagrangian accumulations, which is a very important step in diagnosing cloud-precipitation process following the evolution of air masses. Convection-tracking algorithms have traditionally been developed on the basis of brightness temperature (Tb) from satellite infrared (IR) retrievals. However, vigorous rainfall can be produced by warm-topped systems in a moist environment; this situation cannot be captured by traditional IR-based tracking but is observed in IMERG-CT. Therefore, an advantage of IMERG-CT is its ability to include the previously missing information of shallow clouds that grow into convective storms, which provides us more-complete life cycle records of convective storms than traditional IR-based tracking does. This study also demonstrates the utility of IMERG-CT through investigating various properties of convective systems in terms of the evolution before and after peak precipitation rate and amount. For example, composite analysis reveals a link between evolution of precipitation and convective development: the signature of stratiform anvils remaining after the storm has produced the maximum rainfall, as average Tb stays almost constant for 5 h after the peak of precipitation. Our study highlights the importance of joint analysis of cloud and precipitation data in time sequence, which helps to elucidate the underlying dynamic processes producing tropical rainfall and its resultant effects on the atmospheric thermodynamics.
Abstract
Using cyclone-centered compositing and a database of extratropical-cyclone locations, the distribution of precipitation frequency and rate in oceanic extratropical cyclones is analyzed using satellite-derived datasets. The distribution of precipitation rates retrieved using two new datasets, the Global Precipitation Measurement radar–microwave radiometer combined product (GPM-CMB) and the Integrated Multisatellite Retrievals for GPM product (IMERG), is compared with CloudSat, and the differences are discussed. For reference, the composites of AMSR-E, GPCP, and two reanalyses are also examined. Cyclone-centered precipitation rates are found to be the largest with the IMERG and CloudSat datasets and lowest with GPM-CMB. A series of tests is conducted to determine the roles of swath width, swath location, sampling frequency, season, and epoch. In all cases, these effects are less than ~0.14 mm h−1 at 50-km resolution. Larger differences in the composites are related to retrieval biases, such as ground-clutter contamination in GPM-CMB and radar saturation in CloudSat. Overall the IMERG product reports precipitation more often, with larger precipitation rates at the center of the cyclones, in conditions of high precipitable water (PW). The CloudSat product tends to report more precipitation in conditions of dry or moderate PW. The GPM-CMB product tends to systematically report lower precipitation rates than the other two datasets. This intercomparison provides 1) modelers with an observational uncertainty and range (0.21–0.36 mm h−1 near the cyclone centers) when using composites of precipitation for model evaluation and 2) retrieval-algorithm developers with a categorical analysis of the sensitivity of the products to PW.
Abstract
Using cyclone-centered compositing and a database of extratropical-cyclone locations, the distribution of precipitation frequency and rate in oceanic extratropical cyclones is analyzed using satellite-derived datasets. The distribution of precipitation rates retrieved using two new datasets, the Global Precipitation Measurement radar–microwave radiometer combined product (GPM-CMB) and the Integrated Multisatellite Retrievals for GPM product (IMERG), is compared with CloudSat, and the differences are discussed. For reference, the composites of AMSR-E, GPCP, and two reanalyses are also examined. Cyclone-centered precipitation rates are found to be the largest with the IMERG and CloudSat datasets and lowest with GPM-CMB. A series of tests is conducted to determine the roles of swath width, swath location, sampling frequency, season, and epoch. In all cases, these effects are less than ~0.14 mm h−1 at 50-km resolution. Larger differences in the composites are related to retrieval biases, such as ground-clutter contamination in GPM-CMB and radar saturation in CloudSat. Overall the IMERG product reports precipitation more often, with larger precipitation rates at the center of the cyclones, in conditions of high precipitable water (PW). The CloudSat product tends to report more precipitation in conditions of dry or moderate PW. The GPM-CMB product tends to systematically report lower precipitation rates than the other two datasets. This intercomparison provides 1) modelers with an observational uncertainty and range (0.21–0.36 mm h−1 near the cyclone centers) when using composites of precipitation for model evaluation and 2) retrieval-algorithm developers with a categorical analysis of the sensitivity of the products to PW.