Search Results

You are looking at 1 - 8 of 8 items for :

  • Author or Editor: Melinda Marquis x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Melinda Marquis

No abstract available.

Full access
Melinda Marquis
and
Pam Emch

No abstract available.

Full access
Melinda Marquis
,
Jim Wilczak
,
Mark Ahlstrom
,
Justin Sharp
,
Andrew Stern
,
J. Charles Smith
, and
Stan Calvert

Advances in atmospheric science are critical to increased deployment of variable renewable energy (VRE) sources. For VRE sources, such as wind and solar, to reach high penetration levels in the nation's electric grid, electric system operators and VRE operators need better atmospheric observations, models, and forecasts. Improved meteorological observations through a deep layer of the atmosphere are needed for assimilation into numerical weather prediction (NWP) models. The need for improved operational NWP forecasts that can be used as inputs to power prediction models in the 0–36-h time frame is particularly urgent and more accurate predictions of rapid changes in VRE generation (ramp events) in the very short range (0–6 h) are crucial.

We describe several recent studies that investigate the feasibility of generating 20% or more of the nation's electricity from weather-dependent VRE. Next, we describe key advances in atmospheric science needed for effective development of wind energy and approaches to achieving these improvements. The financial benefit to the nation of improved wind forecasts is potentially in the billions of dollars per year. Obtaining the necessary meteorological and climatological observations and predictions is a major undertaking, requiring collaboration from the government, private, and academic sectors. We describe a field project that will begin in 2011 to improve short-term wind forecasts, which demonstrates such a collaboration, and which falls under a recent memorandum of understanding between the Office of Energy Efficiency and Renewable Energy at the Department of Energy and the Department of Commerce/National Oceanic and Atmospheric Administration.

Full access
William J. Shaw
,
Larry K. Berg
,
Joel Cline
,
Caroline Draxl
,
Irina Djalalova
,
Eric P. Grimit
,
Julie K. Lundquist
,
Melinda Marquis
,
Jim McCaa
,
Joseph B. Olson
,
Chitra Sivaraman
,
Justin Sharp
, and
James M. Wilczak

Abstract

In 2015 the U.S. Department of Energy (DOE) initiated a 4-yr study, the Second Wind Forecast Improvement Project (WFIP2), to improve the representation of boundary layer physics and related processes in mesoscale models for better treatment of scales applicable to wind and wind power forecasts. This goal challenges numerical weather prediction (NWP) models in complex terrain in large part because of inherent assumptions underlying their boundary layer parameterizations. The WFIP2 effort involved the wind industry, universities, the National Oceanographic and Atmospheric Administration (NOAA), and the DOE’s national laboratories in an integrated observational and modeling study. Observations spanned 18 months to assure a full annual cycle of continuously recorded observations from remote sensing and in situ measurement systems. The study area comprised the Columbia basin of eastern Washington and Oregon, containing more than 6 GW of installed wind capacity. Nests of observational systems captured important atmospheric scales from mesoscale to NWP subgrid scale. Model improvements targeted NOAA’s High-Resolution Rapid Refresh (HRRR) model to facilitate transfer of improvements to National Weather Service (NWS) operational forecast models, and these modifications have already yielded quantitative improvements for the short-term operational forecasts. This paper describes the general WFIP2 scope and objectives, the particular scientific challenges of improving wind forecasts in complex terrain, early successes of the project, and an integrated approach to archiving observations and model output. It provides an introduction for a set of more detailed BAMS papers addressing WFIP2 observational science, modeling challenges and solutions, incorporation of forecasting uncertainty into decision support tools for the wind industry, and advances in coupling improved mesoscale models to microscale models that can represent interactions between wind plants and the atmosphere.

Full access
Robert M. Banta
,
Yelena L. Pichugina
,
W. Alan Brewer
,
Eric P. James
,
Joseph B. Olson
,
Stanley G. Benjamin
,
Jacob R. Carley
,
Laura Bianco
,
Irina V. Djalalova
,
James M. Wilczak
,
R. Michael Hardesty
,
Joel Cline
, and
Melinda C. Marquis

Abstract

To advance the understanding of meteorological processes in offshore coastal regions, the spatial variability of wind profiles must be characterized and uncertainties (errors) in NWP model wind forecasts quantified. These gaps are especially critical for the new offshore wind energy industry, where wind profile measurements in the marine atmospheric layer spanned by wind turbine rotor blades, generally 50–200 m above mean sea level (MSL), have been largely unavailable. Here, high-quality wind profile measurements were available every 15 min from the National Oceanic and Atmospheric Administration/Earth System Research Laboratory (NOAA/ESRL)’s high-resolution Doppler lidar (HRDL) during a monthlong research cruise in the Gulf of Maine for the 2004 New England Air Quality Study. These measurements were compared with retrospective NWP model wind forecasts over the area using two NOAA forecast-modeling systems [North American Mesoscale Forecast System (NAM) and Rapid Refresh (RAP)]. HRDL profile measurements quantified model errors, including their dependence on height above sea level, diurnal cycle, and forecast lead time. Typical model wind speed errors were ∼2.5 m s−1, and vector-wind errors were ∼4 m s−1. Short-term forecast errors were larger near the surface—30% larger below 100 m than above and largest for several hours after local midnight (biased low). Longer-term, 12-h forecasts had the largest errors after local sunset (biased high). At more than 3-h lead times, predictions from finer-resolution models exhibited larger errors. Horizontal variability of winds, measured as the ship traversed the Gulf of Maine, was significant and raised questions about whether modeled fields, which appeared smooth in comparison, were capturing this variability. If not, horizontal arrays of high-quality, vertical-profiling devices will be required for wind energy resource assessment offshore. Such measurement arrays are also needed to improve NWP models.

Full access
James Wilczak
,
Cathy Finley
,
Jeff Freedman
,
Joel Cline
,
Laura Bianco
,
Joseph Olson
,
Irina Djalalova
,
Lindsay Sheridan
,
Mark Ahlstrom
,
John Manobianco
,
John Zack
,
Jacob R. Carley
,
Stan Benjamin
,
Richard Coulter
,
Larry K. Berg
,
Jeffrey Mirocha
,
Kirk Clawson
,
Edward Natenberg
, and
Melinda Marquis

Abstract

The Wind Forecast Improvement Project (WFIP) is a public–private research program, the goal of which is to improve the accuracy of short-term (0–6 h) wind power forecasts for the wind energy industry. WFIP was sponsored by the U.S. Department of Energy (DOE), with partners that included the National Oceanic and Atmospheric Administration (NOAA), private forecasting companies (WindLogics and AWS Truepower), DOE national laboratories, grid operators, and universities. WFIP employed two avenues for improving wind power forecasts: first, through the collection of special observations to be assimilated into forecast models and, second, by upgrading NWP forecast models and ensembles. The new observations were collected during concurrent year-long field campaigns in two high wind energy resource areas of the United States (the upper Great Plains and Texas) and included 12 wind profiling radars, 12 sodars, several lidars and surface flux stations, 184 instrumented tall towers, and over 400 nacelle anemometers. Results demonstrate that a substantial reduction (12%–5% for forecast hours 1–12) in power RMSE was achieved from the combination of improved numerical weather prediction models and assimilation of new observations, equivalent to the previous decade’s worth of improvements found for low-level winds in NOAA/National Weather Service (NWS) operational weather forecast models. Data-denial experiments run over select periods of time demonstrate that up to a 6% improvement came from the new observations. Ensemble forecasts developed by the private sector partners also produced significant improvements in power production and ramp prediction. Based on the success of WFIP, DOE is planning follow-on field programs.

Full access
James M. Wilczak
,
Mark Stoelinga
,
Larry K. Berg
,
Justin Sharp
,
Caroline Draxl
,
Katherine McCaffrey
,
Robert M. Banta
,
Laura Bianco
,
Irina Djalalova
,
Julie K. Lundquist
,
Paytsar Muradyan
,
Aditya Choukulkar
,
Laura Leo
,
Timothy Bonin
,
Yelena Pichugina
,
Richard Eckman
,
Charles N. Long
,
Kathleen Lantz
,
Rochelle P. Worsnop
,
Jim Bickford
,
Nicola Bodini
,
Duli Chand
,
Andrew Clifton
,
Joel Cline
,
David R. Cook
,
Harindra J. S. Fernando
,
Katja Friedrich
,
Raghavendra Krishnamurthy
,
Melinda Marquis
,
Jim McCaa
,
Joseph B. Olson
,
Sebastian Otarola-Bustos
,
George Scott
,
William J. Shaw
,
Sonia Wharton
, and
Allen B. White

Abstract

The Second Wind Forecast Improvement Project (WFIP2) is a U.S. Department of Energy (DOE)- and National Oceanic and Atmospheric Administration (NOAA)-funded program, with private-sector and university partners, which aims to improve the accuracy of numerical weather prediction (NWP) model forecasts of wind speed in complex terrain for wind energy applications. A core component of WFIP2 was an 18-month field campaign that took place in the U.S. Pacific Northwest between October 2015 and March 2017. A large suite of instrumentation was deployed in a series of telescoping arrays, ranging from 500 km across to a densely instrumented 2 km × 2 km area similar in size to a high-resolution NWP model grid cell. Observations from these instruments are being used to improve our understanding of the meteorological phenomena that affect wind energy production in complex terrain and to evaluate and improve model physical parameterization schemes. We present several brief case studies using these observations to describe phenomena that are routinely difficult to forecast, including wintertime cold pools, diurnally driven gap flows, and mountain waves/wakes. Observing system and data product improvements developed during WFIP2 are also described.

Full access
Joseph B. Olson
,
Jaymes S. Kenyon
,
Irina Djalalova
,
Laura Bianco
,
David D. Turner
,
Yelena Pichugina
,
Aditya Choukulkar
,
Michael D. Toy
,
John M. Brown
,
Wayne M. Angevine
,
Elena Akish
,
Jian-Wen Bao
,
Pedro Jimenez
,
Branko Kosovic
,
Katherine A. Lundquist
,
Caroline Draxl
,
Julie K. Lundquist
,
Jim McCaa
,
Katherine McCaffrey
,
Kathy Lantz
,
Chuck Long
,
Jim Wilczak
,
Robert Banta
,
Melinda Marquis
,
Stephanie Redfern
,
Larry K. Berg
,
Will Shaw
, and
Joel Cline

Abstract

The primary goal of the Second Wind Forecast Improvement Project (WFIP2) is to advance the state-of-the-art of wind energy forecasting in complex terrain. To achieve this goal, a comprehensive 18-month field measurement campaign was conducted in the region of the Columbia River basin. The observations were used to diagnose and quantify systematic forecast errors in the operational High-Resolution Rapid Refresh (HRRR) model during weather events of particular concern to wind energy forecasting. Examples of such events are cold pools, gap flows, thermal troughs/marine pushes, mountain waves, and topographic wakes. WFIP2 model development has focused on the boundary layer and surface-layer schemes, cloud–radiation interaction, the representation of drag associated with subgrid-scale topography, and the representation of wind farms in the HRRR. Additionally, refinements to numerical methods have helped to improve some of the common forecast error modes, especially the high wind speed biases associated with early erosion of mountain–valley cold pools. This study describes the model development and testing undertaken during WFIP2 and demonstrates forecast improvements. Specifically, WFIP2 found that mean absolute errors in rotor-layer wind speed forecasts could be reduced by 5%–20% in winter by improving the turbulent mixing lengths, horizontal diffusion, and gravity wave drag. The model improvements made in WFIP2 are also shown to be applicable to regions outside of complex terrain. Ongoing and future challenges in model development will also be discussed.

Full access