Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Melissa Free x
  • Journal of Atmospheric and Oceanic Technology x
  • Refine by Access: All Content x
Clear All Modify Search
Melissa Free and Bomin Sun

Abstract

This paper presents evidence of significant discontinuities in U.S. cloud cover data from the Integrated Surface Database (ISD) and its predecessor datasets. While long-term U.S. cloud records have some well-known homogeneity problems related to the introduction of the Automated Surface Observing System (ASOS) in the 1990s, the change to the international standard reporting format [aviation routine weather report (METAR)] in the United States in July 1996 introduces an additional inhomogeneity at many of the stations where humans still make or supplement cloud observations. This change is associated with an upward shift in total cloud of 0.1%–10%, statistically significant at 95 of 172 stations. The shift occurs at both National Weather Service and military weather stations, producing a mean increase in total cloud of 2%–3%. This suggests that the positive trends in U.S. cloud cover reported by other researchers for recent time periods may be exaggerated, a conclusion that is supported by comparisons with precipitation and diurnal temperature range data.

Additional discontinuities exist at other times in the frequency distributions of fractional cloud cover at the majority of stations, many of which may be explained by changes in the sources and types of data included in ISD. Some of these result in noticeable changes in monthly-mean total cloud. The current U.S. cloud cover database needs thorough homogeneity testing and adjustment before it can be used with confidence for trend assessment or satellite product validation.

Full access