Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Michael Bevis x
  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: All Content x
Clear All Modify Search
Michael Bevis, Steven Businger, Steven Chiswell, Thomas A. Herring, Richard A. Anthes, Christian Rocken, and Randolph H. Ware

Abstract

Emerging networks of Global Positioning System (GPS) receivers can be used in the remote sensing of atmospheric water vapor. The time-varying zenith wet delay observed at each GPS receiver in a network can be transformed into an estimate of the precipitable water overlying that receiver. This transformation is achieved by multiplying the zenith wet delay by a factor whose magnitude is a function of certain constants related to the refractivity of moist air and of the weighted mean temperature of the atmosphere. The mean temperature varies in space and time and must be estimated a priori in order to transform an observed zenith wet delay into an estimate of precipitable water. We show that the relative error introduced during this transformation closely approximates the relative error in the predicted mean temperature. Numerical weather models can be used to predict the mean temperature with an rms relative error of less than 1%.

Full access
Jingping Duan, Michael Bevis, Peng Fang, Yehuda Bock, Steven Chiswell, Steven Businger, Christian Rocken, Frederick Solheim, Terasa van Hove, Randolph Ware, Simon McClusky, Thomas A. Herring, and Robert W. King

Abstract

A simple approach to estimating vertically integrated atmospheric water vapor, or precipitable water, from Global Positioning System (GPS) radio signals collected by a regional network of ground-based geodetic GPS receiver is illustrated and validated. Standard space geodetic methods are used to estimate the zenith delay caused by the neutral atmosphere, and surface pressure measurements are used to compute the hydrostatic (or “dry”) component of this delay. The zenith hydrostatic delay is subtracted from the zenith neutral delay to determine the zenith wet delay, which is then transformed into an estimate of precipitable water. By incorporating a few remote global tracking stations (and thus long baselines) into the geodetic analysis of a regional GPS network, it is possible to resolve the absolute (not merely the relative) value of the zenith neutral delay at each station in the augmented network. This approach eliminates any need for external comparisons with water vapor radiometer observations and delivers a pure GPS solution for precipitable water. Since the neutral delay is decomposed into its hydrostatic and wet components after the geodetic inversion, the geodetic analysis is not complicated by the fact that some GPS stations are equipped with barometers and some are not. This approach is taken to reduce observations collected in the field experiment GPS/STORM and recover precipitable water with an rms error of 1.0–1.5 mm.

Full access